Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T03:08:05.465Z Has data issue: false hasContentIssue false

Application of SAS to Bulk Amorphous Polymers, Block Copolymers and Polymer Blends

Published online by Cambridge University Press:  26 February 2011

R. J. Roe*
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH 45221-0012
Get access

Abstract

This article discusses the application of small-angle neutron and X-ray scattering techniques to the study of bulk amorphous polymers, block copolymers and polymer blends. The subject matter discussed include density fluctuation in single component amorphous polymers, concentration fluctuation in compatible polymer blends and its interpretation in terms of the random phase approximation theory, analysis of the scattering from incompatible polymer blends as developed by Porod, determination of the phase boundary thickness, order-disorder transition in block copolymer, interpretation of the scattering from disordered block copolymer systems by means of the random phase approximation theory, characterization of ordered block copolymer structure, and the study of block copolymer micelles.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ruland, W., Prog. Colloid Polymer Sci. 57, 192 (1975).Google Scholar
2. Wendorff, J. H. and Fischer, E. W., Z., Kolloid Z. Polym. 251, 876, 884 (1973).CrossRefGoogle Scholar
3. Rathje, J. and Ruland, W., Colloid Polymer Sci. 254, 358 (1976).CrossRefGoogle Scholar
4. Roe, R. J. and Curro, J. J., Macromolecules 16, 428 (1983).Google Scholar
5. R. J. Roe and H. H. Song, manuscript in preparation. See also Song, H. H., Ph.D. Dissertation, University of Cincinnati, 1986.Google Scholar
6. de Gennes, P.-G., J. Phys. (Paris) 31, 235 (1970).Google Scholar
7. de Gennes, P.-G., Scalinn Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979), p. 109.Google Scholar
8. Porod, G., Kolloid Z. 124, 83 (1951).Google Scholar
9. Ruland, W., J. Appl. Cryst. 4, 70 (1971).Google Scholar
10. Roe, R. J., J. Appl. Cryst. 15, 182 (1982).Google Scholar
11. Leibler, L., Macromolecules 13, 1602 (1980).Google Scholar
12. de la Cruz, M. O. and Sanchez, I. C., Macromolecules 19, 2501 (1986).Google Scholar
13. Guinier, A., X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (W. H. Freeman, San Francisco, 1963).Google Scholar
14. Nojima, S. and Roe, R. J., to be published.Google Scholar
15. Bates, F. S., Cohen, R. E. and Berney, C. V., Macromolecules 15, 589 (1982).Google Scholar
16. Hashimoto, T., Shibayama, M. and Kawai, H., Macromolecules 13, 1237 (1980).Google Scholar
17. Rigby, D. and Roe, R. J., Macromolecules 19, 721 (1986).Google Scholar
18. Vrij, A., J. Chem. Phys. 71, 3267 (1979); Van Beurten and A. Vrij, J. Chem. Phys. 74, 2744 (1981).CrossRefGoogle Scholar
19. Blum, L. and Stell, G., J. Chem. Phys. 71, 42 (1979).Google Scholar
20. Kotlarchyk, M. and Chen, S. H., J. Chem. Phys. 79, 2461 (1983).CrossRefGoogle Scholar
21. Kinning, D. J. and Thomas, E. L., Macromolecules 17, 1712 (1984).CrossRefGoogle Scholar
22. Selb, J., Marie, P., Rameau, A., Duplessix, R. and Gallot, Y., Polymer Bull. (Berlin) 10, 444 (1983).Google Scholar