Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T23:58:54.538Z Has data issue: false hasContentIssue false

Electronic and Photonic Device Applications of In0.5Ga0.5P and In0.5Al0.5P Grown by Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

Jenn-Ming Kuo*
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

Advances in gas-source molecular beam epitaxial (GSMBE) growth techniques have allowed the successful fabrication of electronic and photonic devices based on In0.5Ga0.5P and In0.5A10.5P heterostructures lattice matched to GaAs. Basically the interest in In0.5Ga0.5P and In0.5A10.5P derives from their unique material properties as well as their band alignment to GaAs. In this paper, we review the growth, fabrication, and performance of In0.5A10.5P/In0.2Ga0.8As pseudomorphic high electron mobility transistors (HEMT's), InO.5A10.5P/GaAs heterojunction bipolar transistors (HBT's), and In0.5Ga0.5P red light emitting diodes (LED's) grown on Ge/graded GexSil-x/Si substrates. The results provide a solid demonstration of the feasibility of using In0.5Ga0.5P and In0.5A10.5P prepared by GSMBE for manufacturing GaAs-based optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kishino, K., Kikuchi, A., Nomura, I. and Kaneko, Y., Thin Solid Films 231, 173 (1993).Google Scholar
2. Lott, J. A., Schneider, R. P., Zolper, J. C., and Malloy, J., IEEE Photon. Technol. Lett. 5, 631 (1993).Google Scholar
3. Neuse, C. J., Olsen, G. H., and and Ettenberg, M., Appl. Phys. Lett. 29, 54 (1976).Google Scholar
4. Garbuzov, D Z., Tikunov, A. V., Zihgulin, S. N., Sokolova, Z. N., and Khalfin, V. B., Sov. Phys. Semicond. 22, 653 (1988).Google Scholar
5. Ijichi, T., Ohkubo, M., Matsumoto, N., and Okamoto, H., Tech. Dig. IEEE 12th Int. Semiconductor Laser Conf. p. 4445, Davos, Switzerland (1990).Google Scholar
6. Kuo, J. M., Chen, Y. K., Wu, M. C., and Chin, M. A., Appl. Phys. Lett. 59, 2781 (1991).Google Scholar
7. Chen, Y. K., Wu, M. C., Kuo, J. M., Chin, M. A., and Sergent, A. M., Appl. Phys. Lett. 59, 2929 (1991).Google Scholar
8. Wu, M. C., Chen, Y. K., Kuo, J. M., Chin, M. A., and Sergent, A. M., IEEE Photon. Technol. Lett. 4, 676 (1992).Google Scholar
9. Liau, Z. L., Palmateer, S. C., Groves, S. H., Walpole, J. N., and Missaggia, L. J., Appl. Phys. Lett. 60, 6 (1992).Google Scholar
10. Kim, H. S., Hafich, M. J., Patrizi, G. A., Nanda, A., Vogt, T. J., Woods, L. M., and Robinson, G. Y., J. Appl. Phys. 74, 1431 (1993).Google Scholar
11. Chan, Y. J., Pavlidis, D., Razeghi, M., and Omnes, F., IEEE Trans. Electron Devices, 37, 2141 (1990).Google Scholar
12. Chan, Y. J., Pavlidis, D., Kuo, J. M., and Huang, J. H., Proc. 1992 EDMS, p. 251, Taipei, November (1992).Google Scholar
13. Watanabe, M. O. and Ohba, Y., Appl. Phys. Lett., 50, 906 (1987).Google Scholar
14. Kuo, J. M., Chan, Y. J. and Pavlidis, D., Appl. Phys. Lett. 10, 1105 (1993).Google Scholar
15. Kuo, J. M. and Chan, Y. J., J. Vac. Sci. Technol. B 11, 976 (1993).Google Scholar
16. Kuo, J. M. and Chen, Y. K., IEEE Electron Device Lett. 15, 13 (1994).Google Scholar
17. Mondry, M. J. and Kroemer, H., IEEE Electron Device Lett. 6, 175 (1985).Google Scholar
18. Kuo, J. M., Wu, M. C., Chen, Y. K., Chin, M. A., and Sergent, A. M., SPIE 1634, 361 (1992).Google Scholar
19. Lothian, J. R., Kuo, J. M., Ren, F., and Pearton, S. J., J. Electron Mater. 21, 441 (1992).Google Scholar
20. Lothian, J. R., Kuo, J. M., Hobson, W. S., Lane, E., Ren, F., and Pearton, S. J., J. Vac. Sci. Technol. B, 10, 1061 (1992).Google Scholar
21. Ketterson, A. A., Masselink, W. T., Gedymin, J. S., Klein, J., Peng, C. K., Kopp, W. F., Morkoq, H., and Gleason, K. R., IEEE Trans. Electron Devices, 33, 564 (1986).Google Scholar
22. Onton, A. and Chicotka, R. J., J. Appl. Phys. 41, 4205 (1970).Google Scholar
23. Fitzgerald, E. A., Xie, Y. H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A.. and Weie, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
24. Kuo, J. M., Fitzgerald, E. A., Xie, Y. H., and Silverman, P. J., J. Vac. Sci. Technol. B 11, 857 (1993).Google Scholar
25. Fitzgerald, E. A., Kuo, J. M., Xie, Y. H., and Silverman, P. J., Appl. Phys. Lett. 64, 7 (1994).Google Scholar