Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T16:00:38.570Z Has data issue: false hasContentIssue false

Foraminiferal record in a condensed marine succession: a case study from the Albian and Cenomanian (mid-Cretaceous) of Annopol, Poland

Published online by Cambridge University Press:  01 March 2016

ZOFIA DUBICKA*
Affiliation:
University of Warsaw, Faculty of Geology, Al. Żwirki i Wigury 93, 02–089, Warszawa, Poland
MARCIN MACHALSKI
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00–818 Warszawa, Poland
*
Author for correspondence: z.dubicka@uw.edu.pl

Abstract

A condensed succession at Annopol is of key importance for the mid-Cretaceous palaeontology and palaeobiogeography in Poland. Here, the planktonic and benthic foraminifera from the Albian and Cenomanian intervals are studied. The local foraminiferal record is strongly influenced by burrowers. On the one hand, piping down of the foraminiferal tests through burrows disturbed the original succession, for example by introduction of the Cenomanian foraminifera into the Albian phosphorite horizon. On the other hand, the foraminifera in the burrow fills near the base of the Cenomanian provide the sole piece of evidence of a lower upper Cenomanian unit lost from the record by erosion. Changes in foraminiferal assemblages allow for the interpretation of the succession in terms of bathymetry and biological productivity. The highest rate of primary production is deduced for the Albian phosphorite horizon. Integration of foraminiferal and ammonite biostratigraphy with sedimentology allows for the comparison of a pattern of sea-level oscillations recorded at Annopol with the relevant portion of the classic graph of sea-level changes for the British Isles. It turns out that all important elements of the British curve, that is, transgressive peaks and regressive troughs or lows, left their distinctive, albeit highly residual, record in the Annopol succession. This study demonstrates that even extremely condensed marine deposits, such as those at Annopol, may provide a foraminiferal record of better quality, order and resolution than conventionally anticipated.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Ouf, M. 1992. Foraminiferal distribution in recent sediments of Jizan Shelf, Red Sea, Saudi Arabia. Journal of King Abdulaziz University (Marine Sciences) 3, 2538.CrossRefGoogle Scholar
Amédro, F. 2002. Plaidoyer pour un étage Vraconnien entre l'Albien sensu stricto et le Cénomanien (système Crétacé). Academie Royale de Belgique, Classe des Sciences 4, 1128.Google Scholar
Bardet, N., Fischer, V. & Machalski, M. 2016. Large predatory marine reptiles from the Albian-Cenomanian of Annopol, Poland. Geological Magazine 153, 116.CrossRefGoogle Scholar
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of recent Planktonic Foraminifera. In Oceanic Micropaleontology (ed. Ramsey, A. T. S.), pp. 1100. London: Academic Press.Google Scholar
Caron, M. 1985. Cretaceous planktic foraminifera. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. & Nielsen, K. P.), pp. 1786. Cambridge: Cambrige University Press.Google Scholar
Caron, M., Dall'Agnolo, S., Accarie, H., Barrera, E., Kauffman, E. G., Amédro, F., & Robaszynski, F. 2006. High-resolution stratigraphy of the Cenomanian/Turonian boundary interval at Pueblo (USA) and Wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39, 171200.Google Scholar
Caron, M. & Homewood, P. 1983. Evolution of early planktonic foraminifers. Marine Micropaleontology 7, 453–62.Google Scholar
Carter, D. J. & Hart, M. B. 1977. Aspects of mid-Cretaceous stratigraphical micropaleontology. Bulletin of the British Museum (Natural History), Geology 29, 1135.Google Scholar
Cieśliński, S. 1959. The Albian and Cenomanian in the northern periphery of the Holy Cross Mountains (stratigraphy based on cephalopods). Prace Instytutu Geologicznego 28, 195 (in Polish, with English summary).Google Scholar
Cieśliński, S. 1976. Development of the Danish-Polish Furrow in the Góry Świętokrzyskie Region in the Albian, Cenomanian and Lower Turonian. Biuletyn Instytutu Geologicznego 295, 249–71 (in Polish, with English summary).Google Scholar
Cieśliński, S. 1987. Albian and Cenomanian inoceramids in Poland and their stratigraphic significance. Biuletyn Instytutu Geologicznego 354, 1162 (in Polish, English summary).Google Scholar
Coccioni, R. & Galeotti, S. 1993. Orbitally induced cycles in benthonic foraminiferal morphogroups and trophic structures distribution patterns from the Late Albian “Amadeus Segment” (Central Italy). Journal of Micropaleontology 12, 227–39.Google Scholar
Coccioni, R., Galeotti, S. & Gravili, M. 1995. Latest Albian-earliest Turonian deep-water agglutinated Foraminifera in the Bottaccione section Gubbio, Italy; biostratigraphic and palaeoecologic implications. Revista Espanola de Paleontologia, Volumen Homenaje al Dr. Guillermo Colom, 135–52.Google Scholar
Corliss, B. H. 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314, 435–8.Google Scholar
Corliss, B. H. & Chen, C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16, 716–9.Google Scholar
Dalby, A. P., Patterson, R. T. & Haggart, J. W. 2009. Distribution of Albian-Cenomanian foraminifera from Queen Charlotte Islands, British Columbia, Canada. Constraints on the timing of the northward movement of the Wrangellia Terrane. Journal of Foraminiferal Research 39, 231–45.Google Scholar
Dubicka, Z. & Peryt, D. 2012. Foraminifers and stable isotope record of the Dubivtsi chalk (upper Turonian, Western Ukraine): palaeoenvironmental implications. Geological Quarterly 56, 199214.Google Scholar
Eicher, D. L. & Worstell, P. 1970. Cenomanian and Turonian foraminifera from the Great Plains, United States. Micropaleontology 16, 269324.CrossRefGoogle Scholar
Ernst, G., Niebuhr, B., Wiese, F. & Wilmsen, M. 1996. Facies development, basin dynamics, event correlation and sedimentary cycles in the Upper Cretaceous of selected areas of Germany and Spain. In Global and Regional Controls on Biogenic Sedimentation. II. Cretaceous Sedimentation (eds J. Reitner, F. Neuweiler & F. Gunkel). Research Reports. Göttinger Arbeiten zur Geologie und Paläontologie 3, 87100.Google Scholar
Ernst, G., Schmid, F. & Seibertz, E. 1983. Event-Stratigraphie im Cenoman und Turon von NW-Deutschland. Zitteliana 10, 531–54.Google Scholar
Friedrich, O., Erbacher, J. & Mutterlose, J. 2006. Paleoenvironmental changes across the Cenomanian/Turonian boundary event (oceanic anoxic Event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Revue de Micropaléontologie 49, 121–39.Google Scholar
Gale, A. S., Kennedy, W. J., Burnett, J. A., Caron, M. & Kidd, B. E. 1996. The late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drome, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes). Cretaceous Research 17, 515606.Google Scholar
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S. & Huggett, J. M. 2000. Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society of London 157, 745–57.Google Scholar
Gawor-Biedowa, E. 1972. The Albian, Cenomanian and Turonian foraminifers of Poland and their stratigraphic importance. Acta Palaeontologica Polonica 17, 3174.Google Scholar
Gebhardt, H., Wolfgang, K. & Holbourn, A. 2004. Foraminiferal response to sea level change, organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco. Marine Micropaleontology 53, 133–57.Google Scholar
Gooday, A. J. 2003. Benthic foraminifera (Protista) as tools in deep-water paleoceanography: environmental influences on faunal characteristics. Advances in Marine Biology 46, 390.Google Scholar
Hancock, J. M. 1990. Sea-level-changes in the British region during the Late Cretaceous. Proceedings of the Geologists’ Association 100 (for 1989), 565–94.CrossRefGoogle Scholar
Hancock, J. 2004. The mid-Cenomanian eustatic low. Acta Geologica Polonica 54, 611–27.Google Scholar
Haq, B. U. 2014. Cretaceous eustasy revisited. Global and Planetary Change 113, 4458.Google Scholar
Hart, M. B., Bailey, H. W., Crittenden, S., Fletcher, B. N., Price, R. J. & Świecicki, A. 1989. Cretaceous. In Stratigraphical Atlas of Fossils Foraminifera (eds Jenkins, D. G. & Murray, J. W.), pp. 273371. Chichester: Ellis Horwood Limited.Google Scholar
Hart, M. B., Dodsworth, P. & Duane, A. M. 1993. The late Cenomanian Event in eastern England. Cretaceous Research 14, 495508.Google Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., Horne, D. & Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Research 9, 3103.Google Scholar
Jorissen, F. J., Stigter, H. C. & Widmark, J. G. W. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 26, 315.CrossRefGoogle Scholar
Juignet, P. 1980. Transgressions-régressions, variations eustatiques et influences tectoniques de l'Aptien au Maastrichtien dans le Bassin de Paris occidental et sur la bordure du Massif Armoricain. Cretaceous Research 1, 341–57.Google Scholar
Juignet, P. & Kennedy, W. J. 1976. Faunes d'ammonites et biostratigraphie comparée du Cenomanian du nord-ouest de la France (Normandie) et du sud de l'Angleterre. Bulletin Trimestriel de la Societé Géologique de Normandie et des Amis du Muséum du Havre 63, 1193.Google Scholar
Kaiho, K. 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–22.2.3.CO;2>CrossRefGoogle Scholar
Kaiho, K. 1999. Effect of organic flux and dissolved oxygen on the benthic foraminiferal index (BFIO). Marine Micropaleontology 37, 6776.Google Scholar
Kapuścińska, A. & Machalski, M. 2015. Upper Albian chelonioid turtles from Poland. Geobios 48, 385–95.Google Scholar
Keller, G., Han, Q., Adatte, T. & Burns, S. J. 2001. Palaeoenvironment of the Cenomanian-Turonian transition at Eastbourne, England. Cretaceous Research 22, 391422.Google Scholar
Kennedy, W. J. 2013. On variation in Schloenbachia varians (J. Sowerby, 1817) from the Lower Cenomanian of western Kazakhstan. Acta Geologica Polonica 63, 443–68.Google Scholar
Kennedy, W. J. & Gale, A. S. 2006. The Cenomanian Stage. Proceedings of the Geologists’ Association 117, 187205.Google Scholar
Kennedy, W. J., Gale, A. S., Lees, J. A. & Caron, M. 2004. The Global Boundary Stratotype Section and Point (GSSP) for the base of Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes 27, 2132.Google Scholar
Kennedy, W. J. & Machalski, M. 2015. A late Albian ammonite assemblage from the mid-Cretaceous succession at Annopol, Poland. Acta Geologica Polonica 65 (4). doi: 10.1515/agp-2015-0021.Google Scholar
Kochhann, K. G. D., Koutsoukos, E. A. M. & Fauth, G. 2014. Aptian–Albian benthic foraminifera from DSDP Site 364 (offshore Angola): a paleoenvironmental and paleobiogeographic appraisal. Cretaceous Research 48, 111.Google Scholar
Koutsoukos, E. A. M. & Hart, M. B. 1990. Cretaceous foraminiferal morphogroup distribution patterns, paleocommunities and trophic structures: a case study from the Sergipe Basin, Brazil. Transactions of the Royal Society of Edinburgh, Earth Sciences 81, 221–46.Google Scholar
Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J. & Wagner, T. 2005. Orbital-scale record of the late Cenomanian-Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). International Journal of Earth Sciences 94, 147–59.Google Scholar
Leary, P. N. & Peryt, D. 1991. The late Cenomanian oceanic anoxic event in the western Anglo-Paris Basin and southeast Poland; survival strategies of and recolonisation by benthonic foraminifera. Historical Biology 5, 321–38.Google Scholar
Leckie, R. M. 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33, 164–76.Google Scholar
Machalski, M. & Kennedy, W. J. 2013. Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: stratigraphic and palaeobiogeographic implications. Acta Geologica Polonica 63, 545–54.CrossRefGoogle Scholar
Machalski, M., Komorowski, A. & Harasimiuk, M. 2009. Nowe perspektywy poszukiwań morskich kręgowców kredowych w nieczynnej kopalni fosforytów w Annopolu nad Wisłą. Przegląd Geologiczny 57, 638–41.Google Scholar
Machalski, M. & Martill, D. M. 2013. First pterosaur remains from the Cretaceous of Poland. Annales Societatis Geologorum Poloniae 83, 99104.Google Scholar
Machalski, M. & Olszewska-Nejbert, D. 2016. A new mode of ammonite preservation – implications for dating of condensed phosphorite deposits. Lethaia 49, 6172.Google Scholar
Marcinowski, R. 1980. Cenomanian ammonites from German Democratic Republic, Poland, and the Soviet Union. Acta Geologica Polonica 30, 215325.Google Scholar
Marcinowski, R. & Radwański, A. 1983. The mid-Cretaceous transgression onto the Central Polish Uplands (marginal part of the Central European Basin). Zitteliana 10, 6596.Google Scholar
Marcinowski, R. & Radwański, A. 1989. A biostratigraphic approach to the mid-Cretaceous transgressive sequence of the central Polish Uplands. Cretaceous Research 10, 153–72.Google Scholar
Marcinowski, R. & Walaszczyk, I. 1985. Middle Cretaceous deposits and biostratigraphy of the Annopol section, Central Polish Uplands. Österreichische Akademie der Wissenschaft, Schriftenreihe der Erdwissenschaftlichen Komissionen 7, 2741.Google Scholar
Marcinowski, R. & Wiedmann, J. 1985. The Albian ammonite fauna of Poland and its palaeogeographical significance. Acta Geologica Polonica 35, 199219.Google Scholar
Marcinowski, R. & Wiedmann, J. 1990. The Albian ammonites of Poland. Palaeontologia Polonica 50, 194.Google Scholar
Matoba, Y. 1976. Foraminifera from off Noshiro, Japan, and postmortem destruction of tests in the Japan Sea. In Progress in Micropaleontology: Selected Papers in Honor of Prof. Kiyoshi Asano (eds Takayanagi, Y. & Saito, T.), pp. 169–89. New York: Micropaleontological Press, Special Publications.Google Scholar
Murray, J. W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press, 426 pp.Google Scholar
Nagy, J., Gradstein, F. M., Kaminski, M. A. & Holbourn, A. 1995. Foraminiferal morphogroups, paleoenvironments and new taxa from Jurassic and Cretaceous strata of Thakkola, Nepal. Grzybowski Foundation Special Publications 3, 181209.Google Scholar
Ogg, J. G. & Hinnov, L. A. 2012. Cretaceous . In The Geologic Time Scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 793853. Amsterdam: Elsevier.CrossRefGoogle Scholar
Paul, C. R. C., Lamolda, M. A., Mitchell, S. F., Vaziri, M. R., Gorostidi, A. & Marshall, J. D. 1999. The Cenomanian-Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeography Palaeoclimatology Palaeoecology 150, 83121.Google Scholar
Pearce, M. A., Jarvis, I. & Tocher, B. A. 2009. The Cenomanian – Turonian boundary event, OAE2 and paleoenvironmental change in epicontinental seas: new insights from the dinocyst record. Palaeogeography Palaeoclimatology Palaeoecology 280, 207–34.Google Scholar
Peryt, D. 1983a. Mid-Cretaceous microbiostratigraphy and foraminifers of the NE margins of the Świętokrzyskie (Holy Cross) Mts., Poland. Acta Palaeontologica Polonica 28 (3–4), 417–66.Google Scholar
Peryt, D. 1983b. Planktonic foraminiferal zonation of Mid-Cretaceous of the Annopol Anticline (Central Poland). Zitteliana 10, 575–83.Google Scholar
Peryt, D. & Wyrwicka, K. 1991. The Cenomanian-Turonian Anoxic Event in SE Poland. Cretaceous Research 12, 6580.Google Scholar
Peryt, D. & Wyrwicka, K. 1993. The Cenomanian/Turonian boundary event in Central Poland. Palaeogeography Palaeoclimatology Palaeoecology 104, 185–97.Google Scholar
Peryt, D., Wyrwicka, K., Orth, C., Attrep, M. & Quintana, L. 1994. Foraminiferal changes and geochemical profiles across the Cenomanian/Turonian boundary in central and southeast Poland. Terra Nova 6, 158–65.Google Scholar
Petrizzo, M. R. 2002. Palaeoceanographic and palaeoclimatic inferences from Late Cretaceous planktonic foraminiferal assemblages from the Exmouth Plateau (ODP Sites 762 and 763, eastern Indian Ocean). Marine Micropaleontology 45, 117–50.Google Scholar
Popov, E. V. & Machalski, M. 2014. Late Albian chimaeroid fishes (Holocephali, Chimaeroidei) from Annopol, Poland. Cretaceous Research 47, 118.Google Scholar
Pożaryski, W. 1947. A phosphate deposit of the north-eastern margin of the Holy Cross Mountains. Biuletyn Państwowego Instytutu Geologicznego 27, 156 (in Polish, English summary).Google Scholar
Premoli Silva, I. & Sliter, W. V. 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In Evolution of the Cretaceous Ocean-Climate System (eds Barrera, E. & Johnson, C. C.), pp. 301–28. Geological Society of America, Special Paper no. 332.Google Scholar
Price, R. J. 1977. Evolutionary interpretation of the Foraminiferida Arenobulimina, Gavelinella, and Hedbergella in the Albian of northern-west Europe. Palaeontology 20, 503–27.Google Scholar
Radwański, A., Wysocka, A. & Górka, A. 2012. Miocene burrows of the ghost crab Ocypode and their environmental significance (Mykolaiv Sands, Fore-Carpathian Basin, Ukraine). Acta Geologica Polonica 62, 217–29.Google Scholar
Remin, Z., Dubicka, Z., Kozłowska, A. & Kuchta, B. 2012. A new method of rock disintegration and foraminiferal extraction with the use of liquid nitrogen [LN 2]. Do conventional methods lead to biased paleoecological and paleoenviromental interpretations? Marine Micropaleontology 86–87, 1114.Google Scholar
Robaszynski, F. & Caron, M. (eds) 1979. Atlas of Mid Cretaceous Planktonic Foraminifera (Boreal Sea & Tethys), Part 1–2. Éditions du Centre National de la Recherche Scientifique, Paris, European Working Group on Planktonic Foraminifera, Cahiers de Micropaléontologie.Google Scholar
Robaszynski, F. & Caron, M. 1995. Foraminifères planctoniques du Crétacé: commentaire de la zonation Europe – Méditerranée. Bulletin de la Société Géologique de France 166, 681–92.Google Scholar
Robaszynski, F., Caron, M., Amedro, F., Dupuis, C., Hardenbol, J., Gonzales Donoso, J. M., Linares, D. & Gartner, S. 1993. Le Cénomanien de la région de Kalaat Senan (Tunise centrale): Litho-biostratigraphie et interpréatation séquentielle. Revue de Paléobiologie 12, 351505.Google Scholar
Robaszynski, F., Gale, A., Juignet, P., Amedro, F. & Hardenbol, J. 1998. Sequence stratigraphy in the Upper Cretaceous series of the Anglo-Paris Basin: exemplified by the Cenomanian stage. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P., Hardernbol, J., Jaquin, T. & Vail, P. R.), pp. 363–85. SEPM, Special Publication no. 60.Google Scholar
Samsonowicz, J. 1925. Esquisse géologique des environs de Rachów sur la Vistule et les transgressions de l'Albien et du Cénomanien dans les sillon nord-européen. Sprawozdania Państwowego Instytutu Geologicznego 3, 45118 (in Polish, French summary).Google Scholar
Samsonowicz, J. 1934. Explication de la feuille Opatów (zone 45, colonne 33). Service Géologique de Pologne, Warszawa, Carte Géologique Générale de la Pologne au 100.000-e, 1–97.Google Scholar
Sen Gupta, B. K. 2002. Modern Foraminifera. Dordrecht: Kluwer Academic Publishers, 371 pp.Google Scholar
Sigal, J. 1977. Essai de zonation du Cretace mediterraneen l'aide des foraminifres planctoniques. Géologie Méditerranéenne 4, 99108.Google Scholar
Snyder, W. S., Hale, R. H. & Kontrovitz, M. 1990. Distributional patterns of modern benthic foraminifera on the Washington continental shelf. Micropaleontology 36, 245–58.CrossRefGoogle Scholar
Tronchetti, G. & Grosheny, D. 1991. Les assemblages de Foraminifères benthiques au passage Cénomanien-Turonien à Vergons, S-E France. Geobios 24, 1331.Google Scholar
Van Der Zwaan, G.J., Duijnstee, I.A.P., Den Dulk, M., Ernst, S.R., Jannink, N.T. & Kouwenhoven, T.J. 1999. Benthic foraminifers: proxies or problems? A review of paleoecological concepts. Earth Science Reviews 46, 213–36.Google Scholar
Walaszczyk, I. 1987. Mid-Cretaceous events at the marginal part of the Central European Basin (Annopol-on-Vistula section, Central Poland). Acta Geologica Polonica 37, 6174.Google Scholar
Wang, C. S., Hu, X. M., Jansa, L., Wan, X. Q. & Tao, R. 2001. The Cenomanian-Turonian anoxic event in southern Tibet. Cretaceous Research 22, 481–90.CrossRefGoogle Scholar
Wang, P., Zhang, J. & Min, Q. 1985. Distribution of foraminifera in surface sediments of the East China Sea. In Marine Micropaleontology of China (ed Wang, P.), pp. 3469. China Ocean Press, Beijing.Google Scholar
Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research 24, 525–68.Google Scholar
Wilmsen, M. 2013. Origin and significance of Late Cretaceous bioevents: examples from Cenomanian. Acta Palaeontologica Polonica 57, 759–71.Google Scholar
Supplementary material: File

Dubicka and Machalski supplementary material

Appendix

Download Dubicka and Machalski supplementary material(File)
File 18.8 KB