Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:14:45.567Z Has data issue: false hasContentIssue false

Naktodemasis bowni: New ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), and paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming

Published online by Cambridge University Press:  20 May 2016

Jon J. Smith
Affiliation:
1The University of Kansas, Department of Geology, Lawrence, 66045-7613,
Stephen T. Hasiotis
Affiliation:
1The University of Kansas, Department of Geology, Lawrence, 66045-7613, 2Natural History Museum and Biodiversity Research Center, Lawrence, KS 66045-7613;
Mary J. Kraus
Affiliation:
3University of Colorado, Department of Geological Sciences, Boulder, 80309, ,
Daniel T. Woody
Affiliation:
3University of Colorado, Department of Geological Sciences, Boulder, 80309, ,

Abstract

Adhesive meniscate burrows (AMB) are common in alluvial paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming. AMB are sinuous, variably oriented burrows composed of a nested series of distinct, ellipsoidal packets containing thin, tightly spaced menisci subparallel to the bounding packet. Menisci are non-pelleted and texturally homogeneous with each other and the surrounding matrix. AMB were constructed most likely by burrower bugs (Hemiptera: Cydnidae), cicada nymphs (Hemiptera: Cicadae), and less likely by scarabaeid (Coleoptera: Scarabaeidae) or carabid beetles (Coleoptera: Carabidae), based on burrow morphology and comparison to similar structures produced by these organisms in modern soils. Extant burrowing insects excavate backfilled burrows in well-rooted A and upper B horizons of soils generally below field capacity depending on soil type. This study demonstrates that AMB are distinct morphologically from such previously described ichnofossils as Beaconites, Laminites, Scoyenia, Taenidium, and Ancorichnus. Naktodemasis bowni, a new ichnogenus and ichnospecies, represents burrows composed of nested ellipsoidal packets backfilled with thin, tightly spaced, menisci subparallel to the bounding packet. The presence of N. bowni indicate periods of subaerial exposure associated with pedogenic modification under moderately to well-drained soil conditions, or during periods of better drainage in imperfectly drained soils. N. bowni, therefore, can differentiate alluvial paleoenvironments from marine and lacustrine paleoenvironments, as well as periods of subaerial exposure of sediments deposited in aquatic settings.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsopp, P. G., Klein, M. G., and McCoy, E. L. 1992. Effect of soil-moisture and soil texture on oviposition by Japanese beetle and rose chafer (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 85(6):21942200.Google Scholar
Beamer, R. H. 1928. Studies on the biology of Kansas Cicadidae. University of Kansas Science Bulletin, 18:155263.Google Scholar
Bigham, J. M., Golden, D. C., Buol, S. W., Weed, S. B., and Bowen, L. H. 1978. Iron oxide mineralogy of well-drained ultisols and oxisols: II. Influence on color, surface area, and phosphate retention. Soil Science Society of America Journal, 42:825830.Google Scholar
Blanchart, E., Bruand, A., and Lavelle, P. 1993. The physical structure of casts of Millsonia-Anomala (Oligochaeta: Megascolecidae) in shrub savanna soils (Côte-D'Ivoire). Geoderma, 56:119132.Google Scholar
Bown, T. M. 1982. Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 40:255309.CrossRefGoogle Scholar
Bown, T. M. and Kraus, M. J. 1981. Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34:130.Google Scholar
Bown, T. M. and Kraus, M. J. 1983. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 43:95128.CrossRefGoogle Scholar
Bracken, B. and Picard, M. D. 1984. Trace fossils from Cretaceous/Tertiary North Horn Formation in central Utah. Journal of Paleontology, 58: 477487.Google Scholar
Bradshaw, M. A. 1981. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (Lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics, 24: 615652.CrossRefGoogle Scholar
Brady, L. F. 1947. Invertebrate tracks from the Coconino Sandstone of northern Arizona. Journal of Paleontology, 21:6669.Google Scholar
Bromley, R. G. 1996. Trace Fossils: Biology, Taphonomy and Applications. Chapman & Hall, London, 361 p.CrossRefGoogle Scholar
Bromley, R. G. and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.Google Scholar
Brussaard, L. and Runia, L. T. 1984. Recent and ancient traces of scarab beetle activity in sandy soils of the Netherlands. Geoderma, 34:229250.Google Scholar
Brussaard, L. and Slager, S. 1986. The influence of soil bulk-density and soil-moisture on the habitat selection of the dung beetle Typhaeus-Typhoeus in the Netherlands. Biology and Fertility of Soils, 2(1):5158.Google Scholar
Buatois, L. A. and Mángano, M. G. 2004. Animal-substrate interactions in freshwater environments: Applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions, p. 311333. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publications, 228, London.Google Scholar
Chamberlain, C. K. 1975. Recent lebensspuren in nonmarine aquatic environments, p. 431438. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer Verlag, New York.CrossRefGoogle Scholar
Chapin, J. W. and Thomas, J. S. 2003. Burrower bugs (Heteroptera: Cydnidae) in peanuts: Seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management. Journal of Economic Entomology, 96(4):11421152.Google Scholar
Cherry, R. H., Coale, F. J., and Porter, P. S. 1990. Oviposition and survivorship of sugarcane grubs (Coleoptera: Scarabaeidae) at different soil moistures. Journal of Economic Entomology, 83(4): 13551359.Google Scholar
D'Alessandro, A. and Bromley, R. G. 1987. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology, 30:743763.Google Scholar
Daly, H. V., Doyen, J. T., and Purcell, A. H. III. 1998. Introduction to Insect Biology and Diversity. Oxford University Press, Oxford, 680 p.Google Scholar
Darwin, C. R. 1881. The formation of vegetable mould through the action of worms, the observations on their habits. Murray, London.CrossRefGoogle Scholar
Decourten, F. L. 1978. Scolecocoprus cameronensis Brady from the Kaibab Limestone of northern Arizona: A re-interpretation. Journal of Paleontology, 52:491493.Google Scholar
Evans, M. E. G. 1991. Ground beetles and the soil: Their adaptations and environmental effects, p. 119132. In Meadows, P. S. and Meadows, A. (eds.), The Environmental Impact of Burrowing Animals and Animal Burrows. Zoological Society of London, Number 63, Clarendon Press, Oxford.Google Scholar
Frey, R. W., Pemberton, S. G., and Fagerstrom, J. A. 1984. Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus. Journal of Paleontology, 58:511528.Google Scholar
Froeschner, R. C. and Chapman, Q. L. 1963. A South American cydnid, Scaptocoris castaneus Perty, established in the United States. (Hemiptera: Cydnidae). Entomological News, 74:9598.Google Scholar
Genise, J. F., Bellosi, E. S., and González, M. G. 2004. An approach to the description and interpretation of ichnofabrics in paleosols, p. 355382. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. The Geological Society of London, Special Publications, 228, London.Google Scholar
Ghent, E. D. and Henderson, R. A. 1966. Petrology, sedimentation, and paleontology of Middle Miocene graded sandstones and mudstones, Kaiti Beach, Gisborne. Transactions of the Royal Society of New Zealand Geology, 4:147169.Google Scholar
Gingerich, P. D. and Clyde, W. C. 2001. Overview of mammalian biostratigraphy in the Paleocene-Eocene Fort Union and Willwood Formations of the Bighorn and Clarks Fork Basins, p. 114. In Gingerich, P. D. (ed.), Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming. University of Michigan Papers on Paleontology, 33.Google Scholar
Graham, R. W., Ervin, J. O., and Wood, H. B. 1995. Aggregate stability under oak and pine after four decades of soil development. Soil Science Society of America Journal, 59:17401744.Google Scholar
Gregory, M. R., Martin, A. J., and Campbell, K. A. 2004. Compound trace fossils formed by plant and animal interactions: Quaternary of northern New Zealand and Sapelo Island, Georgia (USA). Fossils and Strata, 51: 88105.Google Scholar
Hasiotis, S. T. 2002. Continental Trace Fossils. SEPM Short Course Notes no. 51, Tulsa, OK, 134 p.Google Scholar
Hasiotis, S. T. 2004. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167(3-4): 177268.Google Scholar
Hasiotis, S. T. and Mitchell, C. E. 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2: 291314.Google Scholar
Hasiotis, S. T. and Dubiel, R. F. 1994. Ichnofossil tiering in Triassic alluvial paleosols: Implications for Pangean continental rocks and paleoclimate, p. 311317. In Beauchamp, B., Embry, A. F., and Glass, D. (eds.), Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists Memoir, 17.Google Scholar
Hasiotis, S. T. and Demko, T. M. 1996. Terrestrial and freshwater trace fossils, Upper Jurassic Morrison Formation, Colorado Plateau, p. 355370. In Morales, M. (ed.), The Continental Jurassic. Museum of Northern Arizona Bulletin, 60, Flagstaff.Google Scholar
Hasiotis, S. T., Mitchell, C. E., and Dubiel, R. F. 1993a. Application of morphologic burrow interpretations to discern continental burrow architectures: Lungfish or crayfish. Ichnos, 2:315333.Google Scholar
Hasiotis, S. T., Aslan, A., and Bown, T. M. 1993b. Origin, architecture, and paleoecology of the early Eocene continental ichnofossil Scaphichnium hamatum—Integration of ichnology and paleopedology. Ichnos, 3:19.Google Scholar
Hasiotis, S. T., Wellner, R. W., Martin, A. J., and Demko, T. M. 2004. Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: Their paleoenvironmental and paleoecological significance. Ichnos, 11:103124.CrossRefGoogle Scholar
Heer, O. 1876-1877. Flora fossilis Helvetiae. Die vorweltliche Flora der Schweiz. J. Würster & Co., 182 p.Google Scholar
Heinberg, C. 1974. A dynamic model for a meniscus filled tunnel (Ancorichnus n. ichogen.) from the Jurassic Pecten Sandstone of Milne Land, East Greenland. Grønlands Geologiske Undersøgelse, Rapport(62):l20.Google Scholar
Heinberg, C. and Birkelund, T. 1984. Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, central East Greenland). Journal of Paleontology, 38:362397.Google Scholar
Hugie, V. K. and Passey, H. B. 1963. Cicadas and their effect upon soil genesis in certain soil in southern Idaho, northern Utah, and northeastern Nevada. Soil Science Society of America Proceedings, 27:7882.Google Scholar
Jacobs, P. M. and Mason, J. A. 2004. Paleopedology of soils in thick Holocene loess, Nebraska, USA. Revista Mexicana de Ciencias Geológicas, 21(1):5470.Google Scholar
Keighley, D. G. and Pickerill, R. 1994. The ichnogenus Beaconites and its distinction from Ancorichnus and Taenidium. Paleontology, 37:305337.Google Scholar
Kraus, M. J. 1980. Genesis of a fluvial sheet sandstone, Willwood Formation, northwest Wyoming, p. 8794. In Gingerich, P. D. (ed.), Early Cenozoic Paleontology and Stratigraphy of the Bighorn Basin, Wyoming. University of Michigan Papers on Paleontology, 24.Google Scholar
Kraus, M. J. 1996. Avulsion deposits in lower Eocene alluvial rocks, Bighorn Basin, Wyoming. Journal of Sedimentary Research, 66:354363.Google Scholar
Kraus, M. J. 1997. Lower Eocene alluvial paleosols: Pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129:387406.Google Scholar
Kraus, M. J. 2002. Basin-scale changes in floodplain paleosols: Implications for interpreting alluvial architecture. Journal of Sedimentary Research, 72: 500509.Google Scholar
Kraus, M. J. and Aslan, A. 1993. Eocene hydromorphic paleosols: Significance for interpreting ancient floodplain processes. Journal of Sedimentary Petrology, 63:453463.Google Scholar
Kraus, M. J. and Gwinn, B. 1997. Facies and facies architecture of Paleogene floodplain deposits, Willwood Formation, Bighorn Basin, Wyoming, USA. Sedimentary Geology, 114(l-4):3354.Google Scholar
Kraus, M. J. and Hasiotis, S. T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76:633646.Google Scholar
Lee, K. E. and Foster, R. C. 1991. Soil fauna and soil structure. Australian Journal of Soil Research, 29(6):745775.Google Scholar
Lefebvre, F., Nel, A., Papier, F., Grauvogel-Stamm, L., and Gall, J.-C. 1998. The first ‘cicada-like Homoptera’ from the Triassic of the Vosges, France. Palaeontology, 41:11951200.Google Scholar
Little, C. 1990. The Terrestrial Invasion: An Ecophysiological Approach to the Origins of Land Animals. Cambridge University Press, Cambridge, England, 304 p.Google Scholar
Marinissen, J. C. Y. and Dexter, A. R. 1990. Mechanisms for stabilization of earthworm casts and artificial casts. Biology and Fertility of Soils, 9: 163167.Google Scholar
Neasham, J. W. and Vondra, C. F. 1972. Stratigraphy and petrology of the lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geological Society of America Bulletin, 83:21672180.Google Scholar
O'Geen, A. T. and Busacca, A. J. 2001. Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169:2337.CrossRefGoogle Scholar
O'Geen, A. T., McDaniel, P. A., and Busacca, A. J. 2002. Cicada burrows as indicators of paleosols in the inland Pacific Northwest. Soil Science Society of America Journal, 66:15841586.Google Scholar
Osberg, D. C., Doube, B. M., and Hanrahn, S. A. 1994. Habitat specificity in African dung beetles: The effect of soil type on the survival of dung beetle immatures (Coleoptera Scarabaeidae). Tropical Zoology, 7:110.Google Scholar
Ponomarenko, A. G. 1995. The geological history of beetles, p. 155171. In Pakaluk, J. and Slipinski, S. A. (eds.), Biology, Phylogeny, and Classification of Coleoptera. Papers Celebrating the 80th Birthday of Roy A. Crowson. Muzeum i Instytut Zoologii PAN, Warsaw.Google Scholar
Popov, Y. A. and Pinto, I. D. 2000. On some Mesozoic burrower bugs (Heteroptera: Cydnidae). Paleontological Journal, 34, Suppl. 3:298302.Google Scholar
Potter, D. A. 1983. Effect of soil-moisture on oviposition, water-absorption, and survival of southern masked chafer (Coleoptera: Scarabaeidae) eggs. Environmental Entomology, 12(4): 12231227.Google Scholar
Rasnitsyn, A. P. and Quicke, D. L. J. 2002. History of Insects. Kluwer Academic Publishers, Dordrecht, 517 p.Google Scholar
Ratcliffe, B. C. and Fagerstrom, J. A. 1980. Invertebrate lebensspuren of Holocene floodplains: Their morphology, origin and paleoecological significance. Journal of Paleontology, 54:614630.Google Scholar
Retallack, G. J. 1997. Palaeosols in the upper Narrabeen Group of New South Wales as evidence of early Triassic palaeoenvironments without exact modern analogues. Australian Journal of Earth Sciences, 44(2): 185201.Google Scholar
Retallack, G. J. 2001. Scoyenia burrows from Ordovician paleosols of the Juniata Formation in Pennsylvania. Palaeontology, 44:209235.Google Scholar
Riis, L. and Esbjerg, P. 1998. Movement, distribution, and survival of Cyrtomenus bergi (Hemiptera: Cydnidae) within the soil profile in experimentally simulated horizontal and vertical soil water gradients. Environmental Entomology, 27(5): 11751181.Google Scholar
Riis, L., Esbjerg, P., and Bellotti, A. C. 2005. Influence of temperature and soil moisture on some population growth parameters of Cyrtomenus bergi (Hemiptera: Cydnidae). Florida Entomologist, 88:1122.CrossRefGoogle Scholar
Savrda, C. E., Blanton-Hooks, A. D., Collier, J. W., Drake, R. A., Graves, R. L., Hall, A. G., Nelson, A. I., Slone, J. C., Williams, D. D., and Wood, H. A. 2000. Taenidium and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, eastern Alabama, southeastern U.S.A. Ichnos, 7:227242.Google Scholar
Schuh, R. T. and Slater, J. A. 1995. True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History. Cornell University Press, Ithaca, New York, 336 p.Google Scholar
Schwertmann, U. 1993. Relations between iron oxides, soil color, and soil formation. Journal of Soil Science, 31:5169.Google Scholar
Shcherbakov, D. Y. 1984. Systematics and phylogeny of Permian Cicadomorpha (Cimicada and Cicadina). Paleontological Journal, 18:8797.Google Scholar
Sowig, P. 1995. Habitat selection and offspring survival rate in three paracoprid dung beetles: The influence of soil type and soil-moisture. Ecography, 18(2): 147154.Google Scholar
Stanley, K. O. and Fagerstrom, J. A. 1974. Miocene invertebrate trace fossils from a braided river environment, western Nebraska, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 15:6382.Google Scholar
Strandine, E. J. 1940. A quantitative study of the periodical cicada with respect to soil of three forests. American Midland Naturalist, 24:177183.Google Scholar
Toots, H. 1967. Invertebrate burrows in the non-marine Miocene of Wyoming. Contributions to Geology, 6:9396.Google Scholar
Torrent, J., Schwertmann, U., and Schulze, D. G. 1980. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 23:191208.Google Scholar
Vepraskas, M. J. 1999. Redoximorphic features for identifying aquic conditions. North Carolina Agricultural Research Service, Technical Bulletin, 301, 33 p.Google Scholar
Villani, M. G., Allee, L. L., Diaz, A., and Robbins, P. S. 1999. Adaptive strategies of edaphic arthropods. Annual Review of Entomology, 44:233256.Google Scholar
Wallwork, J. A. 1970. Ecology of Soil Animals. McGraw Hill, London, 238 p.Google Scholar
White, C. D. 1929. Flora of the Hermit Shale, Grand Canyon, Arizona. Publications, Carnegie Institution of Washington, 405:1221.Google Scholar
Williams, K. S. and Simon, C. 1995. The ecology, behavior, and evolution of periodical cicadas. Annual Review of Entomology, 40:269295.Google Scholar
Willis, E. R. and Roth, L. M. 1962. Soil and moisture relations of Scaptocoris divergens Froeschner (Hemiptera: Cydnidae). Annals of the Entomological Society of America, 55:2132.CrossRefGoogle Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 115:117155.Google Scholar
Wing, S. L., Bown, T. M., and Obradovich, J. D. 1991. Early Eocene biotic and climatic change in interior western North America. Geology, 19:11891192.Google Scholar