Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T00:33:07.016Z Has data issue: false hasContentIssue false

Silole Derivatives with a High and Non-dispersive Electron Mobility, and a 100 % Photoluminescence Quantum Efficiency

Published online by Cambridge University Press:  21 March 2011

H. Murata
Affiliation:
Optical Sciences Division, US Naval Research Laboratory, Washington, DC 20375, U.S.A Department of Chemistry, Centre for Electronic Materials and Devices Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
G. G. Malliaras
Affiliation:
Department of Material Science and Engineering, Cornell University, Ithaca, NY 14853, U.S.A
M. Uchida
Affiliation:
Chisso Corporation, Yokohama, Kanagawa 236-8605, Japan
Y. Shen
Affiliation:
Department of Material Science and Engineering, Cornell University, Ithaca, NY 14853, U.S.A
Z. H. Kafafi
Affiliation:
Optical Sciences Division, US Naval Research Laboratory, Washington, DC 20375, U.S.A
Get access

Abstract

Non-dispersive and fast electron transport was realized for an amorphous, vapor deposited film of 2,5-bis(2',2''-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene in ambient and inert atmospheres. An electron mobility of 2×10−4 cm2/Vs was measured by time-of-flight at an electric field of 6×105 V/cm. This mobility is more than two orders of magnitude larger than that of the most widely used electron transporter, tris(quinolin-8-olato) aluminum (III), in molecular organic light-emitting devices (MOLEDs). Another silole derivative, namely 1,2-bis (1-methyl-2,3,4,5,-tetraphenylsilacyclopentadienyl)ethane, exhibits bright fluorescent blue-green light with an absolute quantum yield close to 100 % in the solid state. MOLEDs composed of stacked neat films of these two silole derivatives and a hole transporter show a significantly low operating voltage and an external quantum efficiency of 4.8 %, close to the theoretical limit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gill, W. D., J. Appl. Phys. 43, 5033 (1972).Google Scholar
2. Yamaguchi, Y. and Yokoyama, M., J. Appl. Phys. 70, 3726 (1991).Google Scholar
3. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. and Holmes, A. B., Nature 365, 628 (1993).Google Scholar
4. Kepler, R. G., Beeson, P. M., Jacobs, S. J., Anderson, R. A., Sinclair, M. B., Valencia, V. S. and Cahill, P. A., Appl. Phys. Lett. 66, 3618 (1995).Google Scholar
5. Bettenhausen, J., Strohriegl, P., Brutting, W., Tokuhisa, H. and Tsutsui, T., J. Appl. Phys. 82, 4957 (1997).Google Scholar
6. Redecker, M., Bradley, D. D. C., Jandke, M. and Strrohriegl, P., Appl. Phys. Lett. 75, 109 (1999).Google Scholar
7. Young, R. H., J. Phys. Chem. 99, 4230 (1995).Google Scholar
8. Borsenberger, P. M., Grauenbrau, W. T. and Magin, E. H., Phys. Stat. Sol. B190, 555 (1995).Google Scholar
9. Borsenberger, P. M. and Bässler, H., J. Chem. Phys. 95, 5327 (1991).Google Scholar
10. Yamaguchi, S., Endo, T., Uchida, M., Izumizawa, T., Furukawa, K. and Tamao, K., Chem. Eur. J. 6, 1683 (2000).Google Scholar
11. Melnyk, A.R. and Pai, D.M., Transient photoconductivity measurements, in Determination of electronic and optical properties”, ed. Rossiter, B.W. and Baetzold, R.C. (John Wiley & Sons, 1993).Google Scholar
12. Borsenberger, P.M. and Weiss, D.S., Organic Photoreceptors for Xerography (Marcel Dekker, 1998) chap.7.Google Scholar
13. Schein, L. B., Phil. Mag. B65, 795 (1992).Google Scholar
14. Yuh, H.-J. and Stolka, M., Phil. Mag. B58, 539 (1988).Google Scholar
15. Yamaguchi, Y. and Yokoyama, M., J. Appl. Phys. 70, 3726 (1991).Google Scholar
16. Malliaras, G. G., Murata, H., Shen, Y., Dunlap, D. H. and Kafafi, Z. H., Appl. Phys. Lett. 79, 2582 (2001).Google Scholar
17. Murata, H., Malliaras, G. G., Uchida, M., Shen, Y. and Kafafi, Z. H., Chem. Phys. Lett. 339, 161 (2001).Google Scholar
18. Murata, H., Kafafi, Z. H. and Uchida, M., Appl. Phys. Lett. 80, 189 (2002).Google Scholar
19. Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K. and Yamaguchi, S., J. Am. Chem. Soc. 118, 11974 (1996).Google Scholar
20. Tsutsui, T., Mater. Res. Bull. 22, 39 (1997).Google Scholar
21. Assuming a refractive index n=n(Alq3)=n(PyPySPyPy and 2PSP)=1.7 and using the equation (1/2n2) for the calculation of the light output coupling factor.Google Scholar
22. Pope, M. and Swenberg, C. E., Electronic processes in organic crystals and polymers (Oxford University Press, 1999).Google Scholar
23. Mattoussi, H., Murata, H., Merritt, C. D., Iizumi, Y., Kido, J. and Kafafi, Z. H., J. Appl. Phys. 86, 2642 (1999).Google Scholar
24. Murata, H., Merritt, C. D., Inada, H., Shirota, Y. and Kafafi, Z. H., Appl. Phys. Lett. 75, 3252 (1999).Google Scholar
25. Baldo, M. A., Thompson, M. E., Forrest, S. R., Nature 403, 750 (2000).Google Scholar