Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T09:31:23.297Z Has data issue: false hasContentIssue false

Temperature and Strain-Rate Dependent Plastic Deformation of Carbon Nanotube

Published online by Cambridge University Press:  21 March 2011

Chengyu Wei
Affiliation:
Department of Mechanical Engineering, Stanford University, California; Deepak Srivastava, NASA Ames Research Center, MST27A-1, Moffett Field, California
Kyeongjae Cho
Affiliation:
Department of Mechanical Engineering, Stanford University, California; Deepak Srivastava, NASA Ames Research Center, MST27A-1, Moffett Field, California
Get access

Abstract

In this work we use classical molecular dynamics to study strain rate and temperature dependent plasticity of carbon nanotube (CNT) under compressive strain. We focus on two types of defects: sp3 bond formation and bond rotation. Our simulation shows that thermal fluctuations help the strained CNT to overcome the local energy barrier to obtain plastic deformation. The yielding strain of a compressed CNT found to be strain-rate and temperature dependent, and low strain rate limit of the yielding strain is estimated to be less that 6%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Treacy, M. M. J., Ebbesen, T. W. and Giblson, J. M., Nature 381, 678 (1996).Google Scholar
[2] Lourie, O., Cox, D. M. and Wagner, H. D., Phys. Rev. Lett. 81, 1638 (1998).Google Scholar
[3] Schadler, L. S., Giannaris, S. C. and Ajayan, P. M., App. Phys. Lett. 73, 3842 (1998).Google Scholar
[4] Andrews, R. et al. , App. Phys. Lett. 75, 1329 (1999).Google Scholar
[5] Ajayan, P. M., Schadler, L. S., Giannaris, C. and Rubio, A., Advanced Materials 12, 750 (2000).Google Scholar
[6] Qian, D., Dickey, E. C., Andrews, R. and Rantell, T., App. Phys. Lett. 76, 2868 (2000).Google Scholar
[7] Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
[8] Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
[9] Yakobson, B. I., Brabec, C. J. and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).Google Scholar
[10] Srivastava, D., Menon, M. and Cho, K., Phys. Rev. Lett. 83, 2973 (1999).Google Scholar
[11] Nardelli, M. B., Yakobson, B. I. and Berholc, J., Phys. Rev. Lett. 81, 4656 (1998).Google Scholar