Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T22:18:52.169Z Has data issue: false hasContentIssue false

Dynamics of heart rate variability analysed through nonlinear and linear dynamics is already impaired in young type 1 diabetic subjects

Published online by Cambridge University Press:  03 February 2016

Naiara M. Souza*
Affiliation:
Faculdade de Ciências e Tecnologia – FCT/UNESPPresidente Prudente, Marília, SP, Brazil
Thais R. Giacon
Affiliation:
Faculdade de Ciências e Tecnologia – FCT/UNESPPresidente Prudente, Marília, SP, Brazil
Francis L. Pacagnelli
Affiliation:
Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, Marília, SP, Brazil
Marianne P. C. R. Barbosa
Affiliation:
Faculdade de Ciências e Tecnologia – FCT/UNESPPresidente Prudente, Marília, SP, Brazil
Vitor E. Valenti
Affiliation:
Faculdade de Filosofia e Ciências – FFC/UNESP, Marília, SP, Brazil
Luiz C. M. Vanderlei
Affiliation:
Faculdade de Ciências e Tecnologia – FCT/UNESPPresidente Prudente, Marília, SP, Brazil
*
Correspondence to: N. M. Souza, Roberto Simonsen Street, 305 - Presidente Prudente, SP 19060-900, Brazil. Tel: +55 18 3229-5819; Fax: +55 18 3221-4391; E-mail: naiara_bs@live.com

Abstract

Background

Autonomic diabetic neuropathy is one of the most common complications of type 1 diabetes mellitus, and studies using heart rate variability to investigate these individuals have shown inconclusive results regarding autonomic nervous system activation.

Aims

To investigate the dynamics of heart rate in young subjects with type 1 diabetes mellitus through nonlinear and linear methods of heart rate variability.

Methods

We evaluated 20 subjects with type 1 diabetes mellitus and 23 healthy control subjects. We obtained the following nonlinear indices from the recurrence plot: recurrence rate (REC), determinism (DET), and Shanon entropy (ES), and we analysed indices in the frequency (LF and HF in ms2 and normalised units – nu – and LF/HF ratio) and time domains (SDNN and RMSSD), through analysis of 1000 R–R intervals, captured by a heart rate monitor.

Results

There were reduced values (p<0.05) for individuals with type 1 diabetes mellitus compared with healthy subjects in the following indices: DET, REC, ES, RMSSD, SDNN, LF (ms2), and HF (ms2). In relation to the recurrence plot, subjects with type 1 diabetes mellitus demonstrated lower recurrence and greater variation in their plot, inter-group and intra-group, respectively.

Conclusion

Young subjects with type 1 diabetes mellitus have autonomic nervous system behaviour that tends to randomness compared with healthy young subjects. Moreover, this behaviour is related to reduced sympathetic and parasympathetic activity of the autonomic nervous system.

Type
Original Articles
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iser, BPM, Stopa, SR, Chueiri, PS, et al. Self-reported diabetes prevalence in Brazil: results from National Health Survey 2013. Epidemiol Serv Saude 2015; 24: 305314.Google Scholar
2. Traon, AP, Fontaine, S, Tap, G, Guidolin, B, Senard, Jl, Hanaire, H. Cardiovascular autonomic neuropathy and other complications in type 1 diabetes. Clin Auton Res 2010; 20: 153160.Google Scholar
3. Pop-Busui, R, Evans, GW, Gerstein, HC, et al. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care 2010; 33: 15781584.Google Scholar
4. Rolim, L, , R, Chacra, A, Dib, S. Neuropatia autonômica cardiovascular diabética: fatores de risco, impacto clínico e diagnóstico precoce. Arq Bras Cardio 2008; 90: 2432.CrossRefGoogle Scholar
5. Villegas, JER, Espinosa, EL, Moreno, DFR, Echeverry, PCC, Rodrigues, WA. Heart rate variability dynamics for the prognosis of cardiovascular risk. PLos One 2011; 6: 115.Google Scholar
6. Vanderlei, LCM, Silva, RA, Pastre, CM, Azevedo, FM, Godoy, MF. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res 2008; 41: 854859.CrossRefGoogle ScholarPubMed
7. Vanderlei, LCM, Pastre, CM, Hoshi, RA, Carvalho, TD, Godoy, MF. Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Rev Bras Cir Cardiovasc 2009; 24: 205217.Google Scholar
8. Vanderlei, FM, Rossi, RC, Souza, NM, et al. Heart rate variability in healthy adolescents at rest. J Hum Growth Dev 2012; 22: 173178.Google Scholar
9. Ferreira, L, Souza, N, Bernardo, A, Vitor, A, Valenti, V, Vanderlei, L. Variabilidade da frequência cardíaca como recurso em fisioterapia: análise de periódicos nacionais. Fisioter Mov 2013; 26: 2536.Google Scholar
10. Chen, S-R, Lee, Y-J, Chiu, H-W, Jeng, C. Impact of physical activity on heart rate variability in children with type 1 diabetes. Childs Nerv Sys 2008; 24: 741747.Google Scholar
11. Seyd, A, Joseph, P, Jacob, J. Automated diagnosis of diabetes using heart rate variability signals. J Med Syst 2012; 36: 19351941.Google Scholar
12. Lucini, D, Zuccotti, G, Malacarne, M, et al. Early progression of the autonomic dysfunction observed in pediatric type 1 diabetes mellitus. Hypertension 2009; 54: 987994.CrossRefGoogle ScholarPubMed
13. Javorka, M, Trunkvalterova, Z, Tonhajzerova, I, Javorkova, J, Javorka, K, Baumert, M. Short-term heart rate complexity is reduced in patients with type 1 diabetes mellitus. Clin Neurophysiol 2008; 119: 10711081.Google Scholar
14. Hägglund, H, Uusitalo, A, Peltonen, JE, et al. Cardiovascular autonomic nervous system function and aerobic capacity in type 1 diabetes. Front Physiol 2012; 3: 356.Google Scholar
15. Trunkvalterova, Z, Javorka, M, Tonhajzerova, I, et al. Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis. Physiol Meas 2008; 29: 817.Google Scholar
16. Vitor, A, Souza, N, Lorenconi, R, et al. Nonlinear methods of heart rate variability analysis in diabetes. HealthMed 2012; 6: 26472653.Google Scholar
17. Javorka, M, Trunkvalterova, Z, Tonhajzerova, I, Lazarova, Z, Javorkova, J, Javorka, K. Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin Physiol Funct Imaging 2008; 28: 326331.Google Scholar
18. Marwan, N, Kurths, J. Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A 2002; 302: 299307.CrossRefGoogle Scholar
19. Ferreira, MT, Messias, M, Vanderlei, LCM, Pastre, CM. Análise comparativa de sáries temporais da variabilidade da frequência cardíaca de indivíduos saudáveis com indivíduos que apresentam insuficiência renal crônica. Tend Mat Apl Comput 2010; 11: 141150.CrossRefGoogle Scholar
20. Hallal, P, Gomez, L, Parra, D, et al. Lições aprendidas depois de 10 anos de uso do IPAQ no Brasil e Colômbia. J Phys Act Health 2010; 7: S259S264.Google Scholar
21. Abeso. Diretrizes brasileiras de obesidade – Associação brasileira para o estudo da obesidade e da síndrome metabólica 2009, 1-83.Google Scholar
22. Ferreira, MG, Valente, JG, Gonçalves-Silva, RMV, Sichieri, R. Accuracy of waist circumference and waist-to-hip ratio as predictors of dyslipidemia in a cross-sectional study among blood donors in Cuiabá, Mato Grosso State, Brazil. Cad Saúde Pública 2006; 22: 307314.Google Scholar
23. Sociedade Brasileira de Cardiologia. VI Diretrizes brasileiras de hipertensão. Arq Bras Cardiol 2010; 95: 151.Google Scholar
24. Gamelin, FX, Berthoin, S, Bosquet, L. Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. J Exerc Sci Fit 2006; 38: 58875893.Google Scholar
25. Godoy, MF, Takakura, IT, Correa, PR. Relevância da análise do comportamento dinâmico nãolinear (Teoria do Caos) como elemento prognóstico de morbidade e mortalidade em pacientes submetidos à cirurgia de revascularização miocárdica. Arq Ciênc Saúde 2005; 12: 167171.Google Scholar
26. Souza, E. Caracterização de sistemas dinâmicos através de gráficos de recorrência. Curitiba: Universidade Federal do Paraná. Dissertação 2008; 197.Google Scholar
27. Selig, FA, Tonolli, ER, Silva, EVCM, Godoy, MF. Variabilidade da frequência cardíaca em neonatos prematuros e de termo. Arq Bras Cardiol 2011; 96: 443449.Google Scholar
28. Kunz, VC, Souza, RB, Takahashi, ACM, Catai, AM, Silva, E. The relationship between cardiac autonomic function and clinical and angiographic characteristics in patients with coronary artery disease. Braz J Phys Ther 2011; 15: 503510.Google Scholar
29. Baptista, MA. Gráficos de recorrência e de poincaré na análise da quantidade de internações por diferentes grupos nosológicos, ocorridas ao longo de uma década, em um hospital de ensino [Tese para título de Doutor]. São José do Rio Preto: Faculdade de Medicina Curso de Pós-graduação em Ciências da Saúde 2011.Google Scholar
30. Peng, CK, Havlin, S, Hausdorff, JM, Mietus, JE, Stanley, HE, Goldberger, AL. Fractal mechanisms and heart rate dynamics: long-range correlations and their breakdown with disease. J Electrocardiol 1995; 28: 5965.Google Scholar
31. Higgins, J. Nonlinear systems in medicine. Yale J Biol Med 2002; 75: 247260.Google Scholar
32. Hotta, N, Otsuka, K, Murakami, S, et al. Fractal analysis of heart rate variability and mortality in elderly community-dwelling people: Longitudinal investigation for the longevity and aging in Hokkaido county (LILAC) study. Biomed Pharmacother 2005; 59: S45S48.Google Scholar
33. Mogensen, UM, Jensen, T, Kober, L, et al. Cardiovascular autonomic neuropathy and subclinical cardiovascular disease in normoalbuminuric type 1 diabetic patients. Diabetes 2002; 61: 18221830.Google Scholar
34. Xhyheri, B, Manfrini, O, Mazzolini, M, Pizzi, C, Bugiardini, R. Heart rate variability today. Prog Cardiovasc Dis 2012; 55: 321331.Google Scholar
35. Rodrigues, TC, Ehrlich, J, Hunter, CM, Kinney, GL, Rewers, M, Snell-Bergeon, JK. Reduced heart rate variability predicts progression of coronary artery calcification in adults with type 1 diabetes and controls without diabetes. Diabetes Technol Ther 2010; 12: 963969.Google Scholar
36. Maser, RE, Lenhard, MJ. Obesity is not a confounding factor for performing autonomic function tests in individuals with diabetes mellitus. Diabetes Obes Metab 2002; 4: 113117.Google Scholar
37. Soydan, N, Bretzel, RG, Fischer, B, Wagenlehner, F, Pilatz, A, Linn, T. Reduced capacity of heart rate regulation in response to mild hypoglycemia induced by glibenclamide and physical exercise in type 2 diabetes. Metabolism 2013; 62: 717724.Google Scholar
38. Matei, D, Popescu, CD, Ignat, B, Matei, R. Autonomic dysfunction in type 2 diabetes mellitus with and without vascular dementia. J Neurol Sci 2013; 325: 69.Google Scholar