Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T17:27:30.724Z Has data issue: false hasContentIssue false

Broadleaf Weed Management in Grain Sorghum with Reduced Rates of Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Enrique Rosales-Robles*
Affiliation:
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Río Bravo, Tamaulipas, Mexico 88900
Ricardo Sanchez-de-la-Cruz
Affiliation:
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Río Bravo, Tamaulipas, Mexico 88900
Jaime Salinas-Garcia
Affiliation:
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Río Bravo, Tamaulipas, Mexico 88900
Victor Pecina-Quintero
Affiliation:
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Río Bravo, Tamaulipas, Mexico 88900
*
Corresponding author's E-mail: rosales.enrique@inifap.gob.mx

Abstract

2,4-D is the most widely used herbicide for weed control in grain sorghum in northern Tamaulipas, Mexico. Crop injury caused by 2,4-D drift to nontarget crops commonly occurs because of prevailing high winds. Field experiments were conducted from 2001 to 2003 to evaluate an integrated weed management program in grain sorghum with alternative postemergence herbicides to 2,4-D at registered and reduced rates. Bromoxynil applied at 480 (registered rate), 360, and 240 g/ha provided excellent broadleaf weed control when adequate rainfall occurred. Prosulfuron at 14.2 g/ha applied broadcast without cultivation provided excellent weed control and sorghum yield comparable with 28.5 g/ha (registered rate). This treatment represented a 32% cost reduction and 50% reduction in herbicide input compared with prosulfuron applied at registered rate without cultivation, and 31% cost reduction compared with 2,4-D at the registered rate (590 g ae/ha) plus cultivation, considered the commercial standard.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Peterson, D. E., and Regehr, D. L. 2000. Control of imazethapyr-resistant common sunflower (Helianthus annuus) in soybean (Glycine max) and corn (Zea mays). Weed Technol. 14:133139.Google Scholar
Andersen, R. N., Behrens, R., Warnes, D. D., and Nelson, W. W. 1973. Bromoxynil for control of common cocklebur and wild common sunflower in soybeans. Weed Sci. 22:103106.Google Scholar
Anderson, D. M., Swanton, C. J., Hall, J. C., and Mersey, B. G. 1993. The influence of soil moisture, simulated rainfall and time of application on the efficacy of glufosinate-ammonium. Weed Res. 33:149160.Google Scholar
Bicki, T. J., Wax, L. M., and Sipp, S. K. 1991. Evaluation of reduced herbicide application strategies for weed control in coarse-textured soils. J. Prod. Agric. 4:516519.CrossRefGoogle Scholar
Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1992. Integrated weed management techniques to reduce herbicide inputs in soybean. Agron. J. 84:973978.Google Scholar
Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1993. Common cocklebur (Xanthium strumarium) control in soybean (Glycine max) with reduced bentazon rates and cultivation. Weed Sci. 41:447453.Google Scholar
Castro, M. E. 1985. Combate de maleza de hoja ancha que dificulta la cosecha de maíz y sorgo. Rio Bravo, Mexico: Campo Experimental Río Bravo, INIFAP, Folleto para Productores Num. 2. 16 p.Google Scholar
DeFelice, M. S., Brown, W. B., Aldrich, R. J., Sims, B. D., Judy, D. T., and Guethle, D. R. 1989. Weed control in soybeans (Glycine max) with reduced rates of postemergence herbicides. Weed Sci. 37:365374.CrossRefGoogle Scholar
Devlin, D. L., Long, J. H., and Maddux, L. D. 1991. Using reduced rates of postmergence herbicides in soybean (Glycine max). Weed Technol. 5:834840.CrossRefGoogle Scholar
Dieleman, J. A. and Mortensen, D. A. 1997. Influence of weed biology and ecology on development of reduced dose strategies for integrated weed management systems. in Hatfield, J. L., Buhler, D. D., and Stewart, B. A., eds. Integrated Weed and Soil Management. Chelsea, MI: Ann Arbor Press. Pp. 333362.Google Scholar
Hartzler, R. G. and Hanna, M. H. 1990. Banding Herbicides for Row Crop Weed Management. Ames, IA: Iowa State University Extension Bull. Pm-1393. 4 p.Google Scholar
Hartzler, R. G., Van Kooten, B. D., Stoltenberg, D. E., Hall, E. M., and Fawcett, R. S. 1993. On-farm evaluation of mechanical and chemical weed management practices in corn (Zea mays). Weed Technol. 7:10011004.CrossRefGoogle Scholar
Klingaman, T. E., King, C. A., and Oliver, L. R. 1992. Effect of application rate, weed species, and weed stage of growth on imazethapyr activity. Weed Sci. 40:227232.CrossRefGoogle Scholar
Lee, S. D. and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds: times and method for application. Weed Sci. 30:520526.CrossRefGoogle Scholar
Lentner, M. and Bishop, T. 1993. Experimental Design and Analysis. 2nd ed. Blacksburg, VA: Valley Nook. Pp. 6364.Google Scholar
Mulder, T. A. and Doll, J. D. 1993. Integrating reduced herbicide use with mechanical weeding in corn (Zea mays). Weed Technol. 7:382389.CrossRefGoogle Scholar
Obermeier, M. L. and Kapusta, G. 1996. Postemergence broadleaf control weed control in corn (Zea mays) with CGA-152005. Weed Technol. 10:689698.Google Scholar
O'Sullivan, J. and Sikkema, P. 2001. Sweet corn (Zea mays) cultivar sensitivity to CGA-152005 postemergence. Weed Technol. 15:204207.Google Scholar
Pleasant, J. M., Burt, R. F., and Frisch, J. C. 1994. Integrating mechanical and chemical weed management in corn (Zea mays). Weed Technol. 8:217223.CrossRefGoogle Scholar
Prostko, E. P. and Meade, J. A. 1993. Reduced rates of postemergence herbicides in conventional soybeans (Glycine max). Weed Technol. 7:365369.CrossRefGoogle Scholar
Rosales-Robles, E. 1993. CGA-152005: Nuevo herbicida para el control postemergente de maleza de hoja ancha en maíz. Memoria Congreso Sociedad de la Ciencia de la Maleza. 14:41.Google Scholar
Rosales-Robles, E., Chandler, J. M., Senseman, S. A., and Prostko, E. 1999. Integrated johnsongrass management in field corn with reduced rates of nicosulfuron and cultivation. Weed Technol. 13:367373.Google Scholar
Rosales-Robles, E., Salinas-García, J., Sánchez-de-la-Cruz, R., Rodrí guez-del-Bosque, L. A., and Esqueda-Esquivel, V. 2002. Interference and control of wild sunflower (Helianthus annuus L.) in spring wheat (Triticum aestivum L.) in northeastern Mexico. Cereal Res. Commun. 30:439446.Google Scholar
[SAGARPA] Secretaría de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion. 2003. Datos Básicos de Sorgo. Boletín Semanal 16 Septiembre de 2003. Mexico, DF, Mexico: Servicio de Información y Estadística Agroalimentaria y Pesquera. 10 p.Google Scholar
Steckel, G. J., DeFelice, M. S., and Sims, B. D. 1990. Integrating reduced rates of postemergences herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Sci. 38:541545.CrossRefGoogle Scholar
Swanton, C. J. and Weise, S. F. 1991. Integrated weed management: the rationale and approach. Weed Technol. 5:657663.CrossRefGoogle Scholar
Vencill, W. K. editor. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. 493 p.Google Scholar
Wilson, R. G. 1993. Effect of preplant tillage, post-plant cultivation, and herbicides on weed density in corn (Zea mays). Weed Technol. 7:728734.CrossRefGoogle Scholar