Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T06:42:04.337Z Has data issue: false hasContentIssue false

Polyamorphism and the universal liquid–liquid critical point in the supercooled state

Published online by Cambridge University Press:  24 January 2011

G.N. Greaves*
Affiliation:
Centre for Advanced Functional Materials and Devices, Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK
*
Email address for correspondence: gng@aber.ac.uk
Get access

Abstract

The physics of critical phenomena is well established in systems as diverse as molecular fluids, crystalline alloys and magnetic materials. As the critical point is approached, the susceptibility increases anomalously and fluctuations give rise to dramatic opalescence. Evidence has recently emerged for the existence of a second critical point in the liquid state at supercooled temperatures, below which polyamorphic phases coexist differing in density but sharing the same composition. Whilst much attention has been paid to supercooled water, polyamorphic phases have been observed in many elemental and oxide liquids potentially offering routes to low-entropy glasses. Our recent direct observation of a polyamorphic phase transition in levitated molten yttria–alumina offers the first opportunity to study the associated critical point in a real supercooled system. In situ small-angle X-ray scattering records sharp rises in the average correlation length of density fluctuations and in the compressibility as the transition is approached. Both increases approximate to the universal power-law relations predicted by the three-dimensional Ising model in common with all critical point phenomena. The observation brings the second critical point predicted in liquids into line with other critical phenomena.

Type
Plenary paper
Copyright
Copyright © Diamond Light Source Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aasland, S. & McMillan, P. F. 1994 Nature 369, 633636.CrossRefGoogle Scholar
Als-Nielsen, J. 1976 Neutron scattering and spatial correlation near the critical point. Phase Transit. Crit. Phenom. 5a, 87164.Google Scholar
Bras, W., Derbyshire, G. E., Ryan, A. J., Mant, G. R., Felton, A., Lewis, R. A., Hall, C. J. & Greaves, G. N. 1993 Nucl. Instrum. Methods A326, 587.Google Scholar
Bras, W., Dolbnya, I. P., Detollenaere, D., van Tol, R., Malfois, M., Greaves, G. N., Ryan, A. J. & Heeley, E. 2003 J Appl. Cryst. 36, 791.CrossRefGoogle Scholar
Debenedetti, P. G. 1997 Metastable Liquids. Princeton University Press.CrossRefGoogle Scholar
Franzese, G. & Stanley, H. E. 2002 J. Phys.: Condens. Matter 14, 22012209.Google Scholar
Fuentevilla, D. A. & Anisimov, M. A. 2006 Phys. Rev. Lett. 97, 195702.CrossRefGoogle Scholar
Götze, W. 1999 J. Phys.: Condens. Matter 11, A1.Google Scholar
Greaves, G. N. & Sen, S. 2007 Adv. Phys. 56, 1.CrossRefGoogle Scholar
Greaves, G. N., Wilding, M. C., Fearn, S., Langstaff, D., Kargl, F., Cox, S., Majérus, O., Vu Van, Q., Benmore, C. J., Weber, R., Martin, C. M. & Hennet, L. 2008 Science 322, 566570.CrossRefGoogle Scholar
Hennet, L., Thiaudière, D., Gailhanou, M., Landron, C., Coutures, J.-P. & Price, D. L. 2002 Rev. Sci. Instrum. 73, 124129.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1969 Statistical Physics. Addison-Wesley. Chapter 12.Google Scholar
McMillan, P. F., Wilson, M., Wilding, M. C., Daisenberger, D., Mezouar, M. & Greaves, G. N. 2007 J. Phys.: Condens. Matter 19, 415101.Google Scholar
Mishima, O. & Suzuki, Y. 2002 Nature 419, 599603.CrossRefGoogle Scholar
Ponyatovsky, E. G. & Barkalov, O. I. 1992 Mater. Sci. Rep. 8, 147191.CrossRefGoogle Scholar
Poria-Koshits, E. A. & Averjanov, V. I. 1968 J. Non-Cryst. Solids 1, 29.Google Scholar
Scopigno, T., Ruocco, G., Sette, F. & Monaco, G. 2003 Science 302, 849.CrossRefGoogle Scholar
Speedy, R. J. & Angell, C. A. 1976 J. Chem. Phys. 65, 851858.CrossRefGoogle Scholar
Stanley, H. E. 1971 Introduction to Phase Transitions and Critical Phenomena. Oxford University Press.Google Scholar
Wochner, P., Gutt, C., Autenrieth, T., Dermer, T., Bugaev, V., Diaz Ortiz, A., Duri, A., Zontone, F., Grübel, G. & Dosch, H. 2009 Proc. Nat. Acad. Sci. USA 106, 1151111514.CrossRefGoogle Scholar
Zarzycki, J. 1991 Glasses and the Vitreous State. Cambridge University Press.Google Scholar