Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T12:58:13.134Z Has data issue: false hasContentIssue false

On the Origin of Stiffening in Biopolymers

Published online by Cambridge University Press:  01 February 2011

Erik Van der Giessen
Affiliation:
Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Teun Koeman
Affiliation:
Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Teun Van Dillen
Affiliation:
Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Patrick Onck
Affiliation:
Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

Strain stiffening of protein networks is explored by means of a finite strain analysis of a two-dimensional network model of cross-linked semiflexible filaments. The results show that stiffening is caused by non-affine network rearrangements that govern a transition from a bending dominated response at small strains to a stretching dominated response at large strains. Thermally-induced filament undulations only have a minor effect; they merely postpone the transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, N. and Ingber, D.E., Biochemistry and Cell Biology, 73, 327335 (1995).Google Scholar
2. Janmey, P.A., Hvidt, S., Lamb, J., Stossel, T.P., Nature 345, 89 (1990).Google Scholar
3. Janmey, P.A., Euteneuer, U., Traub, P. and Schliwa, M., J. Cell Biol. 113, 155 (1991).Google Scholar
4. Ma, L., Xu, J., Coulomb, P.A. and Wirtz, D.J., J. Biol. Chem. 2 74, 1914 (1999).Google Scholar
5. Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C. and Janmey, P.A., Nature (in press)Google Scholar
6. Hvidt, S. and Heller, K., In: Physical Networks: polymers and gels, Eds. Burchard, W. and Ross-Murphy, S.B., Elsevier Applied Science, London, 1990.Google Scholar
7. Shah, J.V. and Janmey, P.A., Rheol. Acta 36, 262268 (1997).Google Scholar
8. MacKintosh, F.C., Käas, J. and Janmey, P.A., Phys. Rev. Lett. 75, 4425 (1995).Google Scholar
9. Isambert, H. and Maggs, A.C., Macromolecules 29, 10361040 (1996).Google Scholar
10. Morse, D.C., Phys. Rev. E, 58, R1237 (1998).Google Scholar
11. Head, D.A., Levine, A.J. and MacKintosh, F.C., Phys. Rev. E, 68, 061907 (2003).Google Scholar
12. Wilhelm, J. and Frey, E., Phys. Rev. Lett. 91, 108103 (2003).Google Scholar
13. Käas, J., Strey, H., Tang, J.X., Finger, D., Ezzel, R., Sackmann, E., Janmey, P.A., Biophys. J., vol. 70, 609625, 1996.Google Scholar
14. Pike, G. and Seager, C., Phys. Rev. B 10, 1421 (1974).Google Scholar
15. Howard, J., Mechanics of motor proteins and the cytoskeleton, Sinauer Associates, Inc., Sunderland, Massachusetts, 2001.Google Scholar