Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T13:03:52.969Z Has data issue: false hasContentIssue false

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus

Published online by Cambridge University Press:  24 August 2016

ANA PAULA DE SOUZA STORI DE LARA
Affiliation:
Departamento de Microbiologia e Parasitologia, UFPel, Pelotas, RS, Brazil
LUCAS BIGOLIN LORENZON
Affiliation:
Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
ANA MUÑOZ VIANNA
Affiliation:
Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel)Pelotas, RS, Brazil
FRANCISCO DENIS SOUZA SANTOS
Affiliation:
Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel)Pelotas, RS, Brazil
LUCIANO SILVA PINTO
Affiliation:
Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel)Pelotas, RS, Brazil
MARIA ELISABETH AIRES BERNE
Affiliation:
Departamento de Microbiologia e Parasitologia, UFPel, Pelotas, RS, Brazil
FÁBIO PEREIRA LEIVAS LEITE*
Affiliation:
Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel)Pelotas, RS, Brazil
*
*Corresponding author: Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Caixa, Postal 354, CEP: 96010900, Pelotas, RS, Brazil. E-mail: fabio_leite@ufpel.edu.br; fabio@leivasleite.com.br

Summary

Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g−1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL−1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barger, I. A. (1999). The role of epidemiological Knowledge and grazing management for helminth control in small ruminants. International Journal for Parasitology 29, 4150.Google Scholar
Betz, F. S., Hammond, B. G. and Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology 32, 156173.Google Scholar
Bone, L. W., Bottjer, K. P. and Gill, S. S. (1988). Factores affecting the larvicidal activity of Bacillus thuringiensis israelensis toxin for Tricostrongylus colubriformis (Nematoda). Journal of Invertebrate Pathology 52, 102107.CrossRefGoogle Scholar
Bravo, A., Gill, S. S. and Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423435.CrossRefGoogle ScholarPubMed
Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberón, M. (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41, 423431.Google Scholar
Capello, M., Bungiro, R. D., Harrison, L. M., Bischof, L. J., Griffitts, J. S., Barrows, B. D. and Aroian, R. V. (2006). A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum . Proceedings of the National Academy of Sciences of the United States of America 103, 1515415159.Google Scholar
Cezar, A. S., Toscan, G., Camillo, G., Sangioni, L. A., Ribas, H. O. and Vogel, F. S. F. (2010). Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil. Veterinary Parasitology 173, 157160.Google Scholar
Chandrawathani, P., Jamnah, O., Waller, P. J., Höglund, J., Larsen, M. and Zahari, W. M. (2002). Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: a special emphasis on Duddingtonia flagrans . Veterinary Research 33, 685696.Google Scholar
Coles, G. C., Bauer, C., Borgsteede, F. H., Geerts, S., Klei, T. R., Taylor, M. A. and Waller, P. J. (1992). World Association for Advancement of Veterinary Parasitology (WAAVP) Methods for detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3543.CrossRefGoogle ScholarPubMed
de Maadg, R. A., Bravo, A., Berry, C., Crick more, N. and Schnepf, H. E. (2003). Structure, diversity, and evolution of protein toxins from spore-forming entopathogenic bacteria. Annual Review of Genetics 37, 409433.Google Scholar
Gasser, R. B., Bott, N. J., Chilton, N. B., Hunt, P. and Beveridge, I. (2008). Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock-bionomic and biotechnological implications. Biotechnology Advances 26, 325334.Google Scholar
Geary, T. G., Woo, K., McCarthy, J. S., Mackenzie, C. D., Horton, J., Prichard, R. K., de Silva, N. R., Olliaro, P. L., Lazdins-Helds, J. K., Engels, D. A. and Bundy, D. A. (2010). Unresolved issues in anthelmintic pharmacology for helminthiases of humans. International Journal for Parasitology 40, 113.Google Scholar
Gordon, H. M. and Whitlock, H. V. (1939). A new technique for counting nematode eggs in sheep faeces. Journal of the Council Scientific and Industrial Research 12, 5052.Google Scholar
Hasshoff, M., Böhnisch, C., Tonn, D., Hasert, B. and Schulenburg, H. (2007). The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis . The Official Journal of the Federation of American Societies for Experimental Biology 21, 18011812.Google Scholar
Höss, S., Menzel, R., Gessler, F., Nguyen, H. T., Jehle, J. A. and Traunspurger, W. (2013). Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans . Environmental Pollution 178, 147–15.Google Scholar
Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.Google Scholar
Kotze, A. C., O`Grady, J., Gough, J. M., Pearson, R., Bagnall, N. H., Kemp, D. H. and Akhurst, R. J. (2005). Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. International Journal for Parasitology 35, 10131022.CrossRefGoogle ScholarPubMed
Lee, D. H., Machi, J. and Ohba, M. (2002). High frequency of Bacillus thuringiensis in feces of herbivorous animals maintained in a zoological garden in Japan. Applied Entomology and Zoology 37, 509516.Google Scholar
Marroquin, L. D., Elyassnia, D., Griffits, J. S., Feiltelson, J. S. and Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans . Genetics 155, 16931699.Google Scholar
Medeiros, A. E., Ramos, Z. and Banchero, G. E. (2014). First report of monepantel Haemonchus contortus resistance on sheep farms in Uruguay. Parasites & Vectors 7, 598.Google Scholar
O'Connor, L. J., Walkden-Brown, S. W. and Kahn, L. P. (2006). Ecology of the free-living stages of major trichostrongylid parasites of sheep. Veterinary Parasitology 142, 115.Google Scholar
Pardo-López, L., Soberón, M. and Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews 37, 322.Google Scholar
Roberts, F. H. S. and O'Sullivan, P. J. (1950). Methods for counts and larval cultures for Strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102.Google Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning – A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998). Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiology and Molecular Biology Reviews 62, 775806.Google Scholar
Schulenburg, H. and Ewbank, J. J. (2007). The genetics of pathogen avoidance in Caenorhabditis elegans . Molecular Microbiology 66, 563570.Google Scholar
Siegel, J. P. (2001). The mammalian safety of Bacillus thuringiensis – based insecticides. Journal of Invertebrate Pathology 77, 1321.Google Scholar
Silva, M. E., Braga, F. R., de Gives, P. M., Millán-Orozco, J., Uriostegui, M. A., Marcelino, L. A., Soares, F. E., Araújo, A. L., Vargas, T. S., Aguiar, A. R., Senna, T., Rodrigues, M. G., Froes, F. V. and de Araújo, J. V. (2015). Fungal antagonism assessment of predatory species and producers metabolites and their effectiveness on Haemonchus contortus infective larvae. BioMed Research International 2015, 241582.CrossRefGoogle ScholarPubMed
Sinott, M. C., Cunha Filho, N. A., Castro, L. L. D., Lorenzon, L. B., Pinto, N. B., Capella, G. A. and Leite, F. P. L. (2012). Bacillus spp. toxicity against Haemonchus contortus larvae in sheep fecal cultures. Experimental Parasitology 132, 103108.Google Scholar
Sinott, M. C., Dias de Castro, L. L., Leite, F. L. L., Gallina, T., De-Souza, M. T., Santos, D. F. L. and Leite, F. P. L. (2014). Larvicidal activity of Bacillus circulans against the gastrointestinal nematode Haemonchus contortus in sheep. Journal of Helminthology 90, 6873.Google Scholar
Soberón, M. and Bravo, A. (2007). Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación. Biotecnologia 14, 303313.Google Scholar
Soberón, M., López-Díaz, J. A. and Bravo, A. (2013). Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganism. Peptides 41, 8793.Google Scholar
Ueno, H., Gonçalves, P. C. (1998). Manual para Diagnóstico das Helmintoses de Ruminantes, 4th Edn. Japan international Cooperation Agency, Tokyo, Japan.Google Scholar
Van den Brom, R., Moll, L., Kappert, C. and Vellema, P. (2015). Haemonchus contortus resistance to monepantel in sheep. Veterinary Parasitology 209, 278280.Google Scholar
Van Wyk, J. A., Stenson, M. O., Van der Merwe, J. S., Vorster, R. J. and Viljoen, P. G. (1999). Anthelmintic resistance in South Africa: surveys indicate an extremely serious situation in sheep and goat farming. Onderstepoort Journal Veterinary Research 66, 273284.Google Scholar
Wei, J. Z., Hale, K., Carla, L., Platzer, E., Wong, C., Fang, S. C. and Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America 100, 27602765.Google Scholar
Yousten, A. A. (1984). Bacillus sphaericus: microbiological factors related to its potential as a mosquito larvicide. Advances in Biotechnology Processes 3, 315343.Google Scholar
Zhang, Y., Lu, H. and Bargmann, C. L. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans . Nature 438, 179184.Google Scholar