Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T19:21:26.584Z Has data issue: false hasContentIssue false

The Formation and Destruction of Molecular Clouds and Galactic Star Formation

Published online by Cambridge University Press:  12 September 2016

Shu-ichiro Inutsuka
Affiliation:
Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, email: inutsuka@nagoya-u.jp
Tsuyoshi Inoue
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan
Kazunari Iwasaki
Affiliation:
Department of Environmental Systems Science, Doshisha University Tatara Miyakodani 1-3, Kyotanabe City, Kyoto 610-0394, Japan
Takashi Hosokawa
Affiliation:
Department of Physics and Research Center for the Early UniverseThe University of Tokyo, Tokyo 113-0033, Japan
Masato I. N. Kobayashi
Affiliation:
Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, email: inutsuka@nagoya-u.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss an overall picture of star formation in the Galaxy. Recent high-resolution magneto-hydrodynamical simulations of two-fluid dynamics with cooling/heating and thermal conduction have shown that the formation of molecular clouds requires multiple episodes of supersonic compression. This finding enables us to create a new scenario of molecular cloud formation through interacting shells or bubbles on galactic scales. We estimate the ensemble-averaged growth rate of individual molecular clouds, and predict the associated cloud mass function. This picture naturally explains the accelerated star formation over many million years that was previously reported by stellar age determination in nearby star forming regions. The recent claim of cloud-cloud collisions as a mechanism for forming massive stars and star clusters can be naturally accommodated in this scenario. This explains why massive stars formed in cloud-cloud collisions follows the power-law slope of the mass function of molecular cloud cores repeatedly found in low-mass star forming regions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

André, P., Men'shchikov, A., Bontemps, S. et al. 2010, A&A, 518, L102 Google Scholar
André, P., Di Francesco, J., Ward-Thompson, D. et al. 2014, Protostars and Planets VI, (Univ of Arizona Press) eds. Beuther, H., Klessen, R., Dullemond, C., & Henning, Th. Google Scholar
Audit, E. & Hennebelle, P. 2005, A&A, 433, 1 Google Scholar
Colombo, D., Hughes, A., Schinnerer, E. et al. 2014, ApJ 784, 3 CrossRefGoogle Scholar
Dawson, J. R., McClure-Griffiths, N. M., Kawamura, A. et al. 2011, ApJ 728, 127 Google Scholar
Dawson, J. R., McClure-Griffiths, N. M., Dickey, J. M. et al. 2011, ApJ 741, 85 CrossRefGoogle Scholar
Gratier, P., Braine, J., Rodriguez-Fernandez, N. J., et al. 2012, A&A, 542, A108 Google Scholar
Hartmann, D. & Burton, W. B. 1997, Atlas of Galactic Neutral Hydrogen (New York: Cambridge Univ. Press)Google Scholar
Heyer, M. H. et al. 2001, ApJ 551, 2, 852 Google Scholar
Heitsch, F., Stone, J. M., Hartmann, L. W., 2009, ApJ, 695, 248 Google Scholar
Heitsch, F., & Hartmann, L. W. (2014) MNRAS 443, 230 Google Scholar
Hennebelle, P. & André, P. 2013, A&A, 560, 68 Google Scholar
Hennebelle, P. & Audit, E., 2007, A&A, 465, 431 Google Scholar
Hosokawa, T. & Inutsuka, S. 2005, ApJ, 623, 917 Google Scholar
Hosokawa, T. & Inutsuka, S. 2006, ApJ, 646, 240 Google Scholar
Hosokawa, T. & Inutsuka, S. 2006, ApJL, 648, L131 CrossRefGoogle Scholar
Hosokawa, T. & Inutsuka, S. 2007, ApJ, 664, 363 Google Scholar
Inoue, T. & Inutsuka, S. 2008, ApJ, 687, 303 Google Scholar
Inoue, T. & Inutsuka, S. 2009, ApJ, 704, 161 Google Scholar
Inoue, T. & Inutsuka, S. 2012, ApJ, 759, 35 CrossRefGoogle Scholar
Inutsuka, S. 2001, ApJ 559, L149 Google Scholar
Inutsuka, S. 2012, Prog. Theor. Exp. Phys., Vol. 2012, 01A307 Google Scholar
Inutsuka, S. & Miyama, S. M. 1992, ApJ, 388, 392 Google Scholar
Inutsuka, S. & Miyama, S. M. 1997 ApJ, 480, 681 CrossRefGoogle Scholar
Inutsuka, S., Inoue, T., Iwasaki, K., & Hosokawa, T. 2015, A&A 580, A49 Google Scholar
Kawamura, A., Mizuno, Y., Minamidani, T., et al. 2009, ApJS, 184, 1 CrossRefGoogle Scholar
Koyama, H. & Inutsuka, S. 2002, ApJL, 564, Issue 2, L97 CrossRefGoogle Scholar
Kramer, C. et al. 1998 A&A 329, 249 Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ 498, 541 Google Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987, Prog. Theo. Phys. 78, 1051 Google Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987, Prog. Theo. Phys. 78, 1273 Google Scholar
Nagai, T., Inutsuka, S., & Miyama, S. M. 1998, ApJ 506, 306 CrossRefGoogle Scholar
Nagasawa, M. 1987, Prog. Theor. Phys., 77, 635 Google Scholar
Peretto, N., Fuller, G. A., Duarte-Cabral, A. et al. 2013, A&A 555, A112 Google Scholar
Roy, A., André, Ph, Arzoumanian, D. et al. 2015, A&A in press (arXiv:1509.01819)Google Scholar
Roman Duval, J. et al. 2010 ApJ 723, 492 Google Scholar
Rosolowsky, E. & Blitz, L. 2005, ApJ, 623, 826 Google Scholar
Solomon, P. M. et al. 1987 ApJ 319, 730 Google Scholar
Tan, J. C., Beltrán, M. T., Caselli, P. et al. (2014) Protostars and Planets VI, (Univ of Arizona Press) eds. Beuther, H., Klessen, R., Dullemond, C., & Henning, Th. Google Scholar
Taylor, A. R., Gibson, S. J., Peracaula, M. et al. 2003, AJ 125, 3145 Google Scholar
Zuckerman, B. & Evans, N. J. 1974, ApJ, 192, L149 Google Scholar