Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T19:29:54.272Z Has data issue: false hasContentIssue false

Large Scale Periodic Magnetic Nanostructures Fabricated by Optical Interference Lithography

Published online by Cambridge University Press:  15 March 2011

A. Carl
Affiliation:
Gerhard-Mercator-Universität Duisburg, Tieftemperaturphysik, 47048 Duisburg, Germany
S. Kirsch
Affiliation:
Gerhard-Mercator-Universität Duisburg, Tieftemperaturphysik, 47048 Duisburg, Germany
E.F. Wassermann
Affiliation:
Gerhard-Mercator-Universität Duisburg, Tieftemperaturphysik, 47048 Duisburg, Germany
Get access

Abstract

Large scale periodic arrays of Co/Pt multilayer dots with perpendicular magnetic anisotropy are fabricated utilizing optical interference lithography with Ar+ ion lasers operating at wavelengths of 457nm and 244nm, respectively. The experimental technique allows us to fabricate dot-arrays with periodicities ranging between 125nm and 1100nm and with corresponding dot diameters between 70nm and 740nm. The dot-arrays are prepared on (100)-silicon substrates covering a total area of up to 20cm2 with a maximum dot density of about 4.1x1010dots/in2 as well as within the surface of (110)-silicon substrates. The global magnetic properties of the dot-arrays are characterized by the magneto-optical Kerr effect. The micromagnetic properties of a single Co/Pt dot are measured with quantitative magnetic force microscopy (QMFM) by using a MFM-tip, the magnetic properties of which have been calibrated within the point probe approximation with nanofabricated current carrying rings. This allows us to measure quantitatively the z-component of both the magnetization and the stray field of a Co/Pt dot on the nanometer scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Brown, W.F., Micromagnetics (Wiley, New York, 1963)Google Scholar
[2] Prinz, G. and Hathaway, K., Physics Today, April 1995 Google Scholar
[3] Pohm, A.V., Huang, J.S.T., Daughton, J.M., Krahn, D.R., Mehra, V., IEEE Trans. Magn. 24, 3117 (1988)Google Scholar
[4] Smyth, J.F., Schultz, S., Fredkin, D.R., Kern, D.P., Rishton, S.A., Schmid, H., Cali, M., and Koehler, T.R., J. Appl, Phys. 69, 5262 (1991) R. M. H. New, R. F. W. Pease, und R. L. White, J. Vac. Sci. Technol. B12, 3196 (1994)Google Scholar
[5] Fullerton, E.E., Margulies, D.T., Schabes, M.E., Carey, M., Gurney, B., Moser, A., Best, M., Zeltzer, G., Rubin, K., Rosen, H., Doerner, M., Appl. Phys. Lett. 77, 3806 (2000)Google Scholar
[6] Dennis Speliotis, E., J. Magn. Magn. Mater. 193, 29 (1999)Google Scholar
[7] Moser, A. and Weller, D., IEEE Trans. Magn. 35, 2808 (1999) H.J. Richter, IEEE Trans. Magn. 35, 2790 (1999)Google Scholar
[8] Weller, Dieter, Moser, Andreas, Folks, Liesl, Best, Margaret E., Lee, Wen, Toney, Mike F., Schwickert, M., Thiele, Jan-Ulrich, and Doerner, Mary F., IEEE Trans. Magn. 36, 10 (2000)Google Scholar
[9] Chien, C.L., J. Appl. Phys. 69, 5267 (1991) C.L. Chien in: Science and Technology of Nanostructured Magnetic Materials; edited by: G.C. Hadjipanayis and G.A. Prinz, NATO ASI Series B, Vol. 259, 477 (1991)Google Scholar
[10] Hayashi, Takayoshi, Hirono, Shigero, Tomita, Masato and Umemura, Shigeru, Nature Vol. 381, 772 (1996) J.-J. Delaunay, T. Hayashi, M. Tomita and S. Hirono, J. Appl. Phys. 82, 2200 (1997) J.-J. Delaunay, T. Hayashi, M. Tomita, S. Hirono and S. Umemura, Appl. Phys. Lett. 71, 3427 (1997)Google Scholar
[11] Liou, S.H., Liu, Y., Malhotra, S.S., Yu, M. and Sellmyer, D.J., J. Appl. Phys. 79, 5060 (1996) T.J. Konno, K. Shoji, K. Sumiyama, K. Suzuki, J. Magn. Magn. Mater. 195, 9 (1999)Google Scholar
[12] Weinforth, H., Ch. Somsen, Rellinghaus, B., Carl, A., Wassermann, E.F. and Weller, D., IEEE Trans. Magn. 34, 1132 (1998)Google Scholar
[13] Sun, SH., Murray, C.B., Weller, D., Folks, L., Moser, A., Science 272, 85 (2000)Google Scholar
[14] Fernandez, A., Bedrossian, P.J., Baker, S.L., Vernon, S.P., and Kania, D.R., IEEE Trans. Mag. 32, 4472 (1996)Google Scholar
[15] Gider, S., Shi, J., Awschalom, D.D., Hopkins, P.F., Campman, K.L., Gossard, A.C., Kent, A.D., and Molnar, S. von, Appl. Phys. Lett. 69, 3269 (1996)Google Scholar
[16] Chou, Stephen Y., Wei, Mark S., Krauss, Peter R., and Fischer, Paul B., J. Appl. Phys. 76, 6673 (1994)Google Scholar
[17] Chou, S.Y., Krauss, P.R., and Renstrom, P.J., Science 272, 85 (1996)Google Scholar
[18] Rousseaux, F., Decanini, D., Carcenac, F., Cambril, E., Ravet, M.F., Chappert, C., Bardou, N., Bartenlian, B., and Veillet, P., J. Vac. Sci. Technol. B 13, 2787 (1995)Google Scholar
[19] Savas, T.A., Schattenburg, M.L., Carter, J.M. and Henry Smith, I., J. Vac. Sci. Technol. B14, 4167 (1996); M. Farhoud, M. Hwang, Henry I. Smith, M.L. Schattenburg, J.M. Bae, Youcef-Toumi, and C.A. Ross, IEEE Trans. Magn. (1998)Google Scholar
[20] Wassermann, E.F., Thielen, M., Kirsch, S., Pollmann, A., Weinforth, H. and Carl, A., J. Appl. Phys. 83, 1753 (1998)Google Scholar
[21] Carl, A., Kirsch, S., Lohau, J., Weinforth, H., and Wassermann, E.F., IEEE Trans. Magn. 35, 3106 (1999)Google Scholar
[22] Ross, C.A., Savas, T.A., Smith, H.I., Hwang, M., and Chantrell, R., IEEE Trans. Magn. 35, 3781 (1999)Google Scholar
[23] Kreuzer, Stephan, Prügl, Klemens, Bayreuther, Günther, Weiss, Dieter, Thin Solid Films 318, 219 (1998)Google Scholar
[24] Wernsdörfer, W., Hasselbach, K., Mailly, D., Barbara, B., Benoit, A., Thomas, L., Suran, G., J. Magn. Magn. Mater. 145, 33 (1995)Google Scholar
[25] Martin, Y. and Wickramasinghe, H.K., Appl. Phys. Lett. 50, 1455 (1987) R. Allenspach, H. Salemik, A. Bischof, and E. Weibel, Z. Phys. B67, 125 (1987) J.J. Sáenz, N. Garcia, P. Grütter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, and H.-J. Güntherodt, J. Appl. Phys. 62, 4293 (1987)Google Scholar
[26] Proksch, R.B., Foss, S., and Dahlberg, E. D., IEEE Trans. Magn. 30, 4467 (1994)Google Scholar
[27] Babcock, K., Elings, V., Dugas, M., Loper, S., IEEE Trans. Magn. 30, 4503 (1994)Google Scholar
[28] Rugar, D., Mamin, H.J., Guethner, P., Lambert, S.E., Stern, J.E., McFadyen, I., Yogi, T., J. Appl. Phys. 68, 1169 (1990)Google Scholar
[29] Babcock, K.L., Elings, V.B., Shi, J., Awschalom, D.D., and Dugas, M., Appl. Phys. Lett. 69, 705 (1996)Google Scholar
[30] Göddenhenrich, T., Lemke, H., Mück, M., Hartmann, U. and Heiden, C., Appl. Phys. Lett. 57, 2612 (1990)Google Scholar
[31] Kong, Linshu and Chou, Stephen Y., Appl. Phys. Lett. 70, 2043 (1997) Linshu Kong and Stephen Y. Chou, J. Appl. Phys. 81, 5026 (1997)Google Scholar
[32] Lohau, J., Kirsch, S., Carl, A., Dumpich, G., and Wassermann, E.F., J. Appl. Phys. 86, 3410 (1999)Google Scholar
[33] Hartmann, U., Physics Letters A137, 475 (1989)Google Scholar
[34] Hug, Hans J., Stiefel, B., van Schendel, P.J.A., Moser, A., Hofer, R., Martin, S., Güntherodt, H.-J., Portun, Steffen, Abelmann, Leon, Lodder, J.C., Bochi, Gabriel, and O'Handley, R.C., J. Appl. Phys. 83, 5609 (1998)Google Scholar
[35] Proksch, R.B., Schaffer, T.E., Moskowitz, B.M., Dahlberg, E.D., Bazylinski, D.A. and Frankel, R.B., Appl. Phys. Lett. 66, 2582 (1995)Google Scholar
[36] Proksch, Roger, Skidmore, George D., Dahlberg, E. Dan, Foss, Sheryl, Schmidt, J.J., Merton, Chris, Walsh, Brian and Dugas, Matt, Appl. Phys. Lett. 69, 2599 (1996)Google Scholar
[37] Chang, A.M., Hallen, H.D., Harriott, L., Hess, H., Kao, H., Kwo, J., Miller, R.E., Wolfe, R. and Ziel, J. van der, Appl. Phys. Lett. 61, 1974 (1992)Google Scholar
[38] Thiaville, A., Belliard, L., Majer, D., Zeldov, E. and Miltat, J., J. Appl. Phys. 82, 3182 (1997)Google Scholar
[39] Kirtley, J., Ketchen, M., Stawiasz, K., Sun, J., Gallagher, W., Blanton, S. and Wind, S., Appl. Phys. Lett. 66, 1138 (1995)Google Scholar
[40] Wassermann, E.F., Chr. Bürgel, Carl, A., and Lohau, J., accepted for publication in JMMM Google Scholar
[41] Lohau, J., Kirsch, S., Carl, A. and Wassermann, E.F., Appl. Phys. Lett. 76, 3094 (2000)Google Scholar
[42] Garvin, H.L., Garmire, E., Somekh, S., Stoll, H., and Yariv, A., Appl.Optics, 12, 455 (1973); D.C. Flanders, H.I. Smith, H.W. Lehmann, R Widmer, and D.C. Shaver, Appl. Phys. Lett. 32, 112 (1978)Google Scholar
[43] Zeper, W.B., Kesteren, H.W. van, Jacobs, B.A.J., Spruit, J.H.M., and Carcia, P.F., J. Appl. Phys. 70, 2264 (1991)Google Scholar
[44] Zhong, Q., Inniss, D., Kjoller, K. and Elings, V.B., Surf. Sci. 290, L688 (1993)Google Scholar
[45] Hadobás, K., Kirsch, S., Carl, A., Acet, M. and Wassermann, E.F., Nanotechnology 11, 161 (2000)Google Scholar
[46] Lohau, J., Moser, A., Rettner, C.T., Best, M.E., and Terris, B.D., Appl. Phys. Lett. 78, 990 (2001)Google Scholar
[47] Thielen, M., Kirsch, S., Weinforth, H., Carl, A. and Wassermann, E.F., IEEE Trans. Magn. 34, 1009 (1998)Google Scholar
[48] Carl, A., Lohau, J., Kirsch, S., and Wassermann, E.F., J. Appl. Phys. 89, 6098 (2001)Google Scholar
[49] Bürgel, Chr., Carl, A., Kirsch, S., and Wassermann, E.F., unpublishedGoogle Scholar
[50] Lohau, J., Carl, A., Kirsch, S., and Wassermann, E.F., Appl. Phys. Lett. 78, 2020 (2001)Google Scholar