Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:25:49.080Z Has data issue: false hasContentIssue false

Non-Classical Reaction Kinetics: Experiments

Published online by Cambridge University Press:  10 February 2011

Raoul Kopelman
Affiliation:
Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
Anna L. Lin
Affiliation:
Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
Get access

Abstract

It has been well established by theory and simulations that the reaction rates of diffusion-limited reactions can be affected by the spatial dimension in which they occur. The types of reactions A + B → C, A + A → A, and A + C→, C have been shown, theoretically and/or by simulation, to exhibit non-classical reaction kinetics in low and fractal dimensions. We present here experimental results from several 1D and fractal systems.

An A+B → C type reaction was experimentally investigated in a long, thin capillary tube in which the reactants, A and B, are initially segregated. This initial segregation of reactants means that the net diffusion is along the length of the capillary only, making the system effectively 1D and allowing some of the properties of the resulting reaction front to be studied. The reaction rate of excitonic fusion, A + A →A, as well as trapping, A + C→ C, reactions were observed via phosphorescence(P) and delayed fluorescence(F) of naphthalene within the channels of Vycor glass, in isotopically mixed naphthalene crystals and in the isolated chains of dilute polymer blends. In these experiments, the non-classical kinetics are measured in terms of the heterogeneity exponent, h, from the equation: Rate ∼ F =; kt-hpn,, which gives the time dependence of the rate coefficient. Classically h =; 0, while h =; 1/2 in 1D, as well as in the fractal dimensions discussed here, for A + A → A as well as A + C →C type reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fauman, E. E. and Kopelman, R., Mol. Cell. Biophys. 6, 47 (1989).Google Scholar
2. Models of Non-Classical Reaction Rates, ed. Lebowitz, J. L., special G. Weiss issue of J. Stat. Phys. 65, (1991).Google Scholar
3. Ovchinnikov, A. A. and Zeldovich, Y. G., Chem. Phys. B} 28, 215 (1978).Google Scholar
4. Bramson, M. and Griffeath, D. Z., Wahrscheinlichskeitstheorie Gebiete 53, 183 (1980).Google Scholar
5. Bramson, M. and Griffeath, D. Z., Annals of Probability 8, 183 (1980).Google Scholar
6. Keizer, J., J. Phys. Chem. 86, 5052 (1982).Google Scholar
7. Keizer, J., J. Chem. Phys. 79, 4877 (1983).Google Scholar
8. Torney, D. C. and McConnel, H. M., J. Phys. Chem.} 87, 1441 (1983).Google Scholar
9. Klymko, P. W. and Kopelman, R., J. Phys. Chem. 87, 4565 (1983).Google Scholar
10. Toussaint, D. and Wilczek, F., J. Chem. Phys.} 78, 2642 (1983).Google Scholar
11. Torney, D. C., J. Chem. Phys. Z 9, 3606 (1983).Google Scholar
12. Anacker, L. W. and Kopelman, R., J. Chem. Phys.} 81, 6402 (1984).Google Scholar
13. Elyutin, P. V., J. Phys. C 17, 1867 (1984).Google Scholar
14. Racz, , Z., Phys. Rev. Lett. L 5, 1707 (1985).Google Scholar
15. Lushnikov, A. A., Phys. Lett. A 120, 135 (1987).Google Scholar
16. Anacker, L. W. and Kopelman, R., Phys. Rev. Lett. 58, 289 (1987).Google Scholar
17. Doering, C. R. and Ben-Avraham, D., Phys. Rev. A 38, 3035 (1988).Google Scholar
18. Kopelman, R., Parus, S. J., and Prasad, J., in Excited State Relaxation and Transport Phenomena in Solids, eds. Skinner, J. L. and Fayer, M. D., special issue of Chem. Phys. 128, 209 (1988).Google Scholar
19. Lindenberg, K., West, B. J., and Kopelman, R., Phys. Rev. Lett. 60, 1777 (1988).Google Scholar
20. Peacock-López, E. and Keizer, J., J. Chem. Phys. 88, 1997 (1988).Google Scholar
21. Spouge, J. L., Phys. Rev. Lett. 60, 871 (1988). ibid 1885.Google Scholar
22. Doering, C. R. and Ben-Avraham, D., Phys. Rev. Lett. 62, 2563 (1989).Google Scholar
23. Privman, V., J. Stat. Phys. L 9, 629 (1992).Google Scholar
24. Galfi, L. and Racz, Z., Phys. Rev. A, 38, 3151 (1988).Google Scholar
25. Kopelman, R., Science 241, 1620 (1988).Google Scholar
26. Sundstrom, V., Gillbro, T., Gadonas, R.A., Piskarskas, A., sl J. Phys. Chem., 89, 2754 (1988).Google Scholar
27. Gulbinas, V., Chachisvilis, M., Persson, A., Svanberg, S., Sundstrom, V., J. Phys. Chem., 98, 8118 (1994).Google Scholar
28. Dexheimer, S.L., Vareka, W.A., Mittleman, D., Zettl, A., Shank, C V., Chem. Phys. Lett., 235, 552 (1995).Google Scholar
29. Li, C. S., Ph. D. Thesis, University of Michigan, Ann Arbor (1988).Google Scholar
30. Hochstrasser, R. M. and Whiteman, , J. Chem. Phys. 56, 5945 (1972).Google Scholar
31. Fayer, M. D., in Modern Problems in Solid State Physics, Vol.4, eds. Agranovich, V. M. and Hoschstrasser, R. M., (North-Holland, Amsterdam 185 (1983)).Google Scholar
32. Rughooputh, S. D. D. V., Bloor, D., Phillips, D. and Movaghar, B., Phys. Rev. B 35, 8103 (1987).Google Scholar
33. Rodriguez, W. J., Auerbach, R. A., G. L. McPherson, J. Chem. Phys. 85, 6442 (1986).Google Scholar
34. Weiss, G., Kopelman, R., Havlin, S., S. Phys. Rev. A 39, 466 (1989).Google Scholar
35. Koo, Y. E. and Kopelman, R., J. Stat. Phys. 6, 893 (1991).Google Scholar
36. Koo, Y. E., Li, L., and Kopelman, R., Mol. Cryst. Liq. Cryst. 183, 187 (1990).Google Scholar
37. Smoluchowski, M. V., Z. Phys. Chem. 92, 129 (1917).Google Scholar
38. Chandrasekhar, S., Rev. Mod. Phys. 15, 1 (1943).Google Scholar
39. Li, L., Ph. D. Thesis, University of Michigan, Ann Arbor (1989).Google Scholar
40. Redner, S., in Extended Abstracts of the Materials Research Society Symposium on Dynamics in Small Confining Systems, eds. Drake, J. M., Klafter, J., and Kopelman, R., 109 (1990). 116 Google Scholar
41. Kopelman, R., J. Stat. Phys. 42, 185 (1986).Google Scholar
42. Klymko, P. W. and Kopelman, R., Lumin, J.. 24/25, 457 (1981).Google Scholar
43. Klymko, P. W. and Kopelman, R., J. Phys. Chem. 86, 3686 (1982).Google Scholar
44. Prasad, J. and Kopelman, R., J. Phys. Chem. 91, 265 (1987).Google Scholar
45. Prasad, J. and Kopelman, R., Chem. Phys. Lett. 157, 535 (1989).Google Scholar
46. Kopelman, R., Parus, S., Prasad, J., Phys. Rev. Lett. 56, 1742 (1986).Google Scholar
47. Kopelman, R., Parus, S. J., and Prasad, J., Chem. Phys. 128, 209 (1988).Google Scholar
48. Allen, E. O., Plastic Polymer Science and Technology, ed. Baijal, M. D., (New York, Wiley, 600 (1982)).Google Scholar
49. Shi, Z. Y., Li, C-S. and Kopelman, R., in Polymer Based Molecular Composites, Proceedings of the Materials Research Symposium, eds. Mark, J. E., Shaefer, D. W., (Pittsburgh, Pennsylvania (1989)).Google Scholar
50. Shi, Z. Y., Ph. D. Thesis, University of Michigan, Ann Arbor (1990).Google Scholar