Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T15:29:35.352Z Has data issue: false hasContentIssue false

Characterisation of TiO2 films grown at low temperatures for alternative gate dielectric application

Published online by Cambridge University Press:  21 March 2011

Jun-Ying Zhang
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, People's, Republic of China
Ian W. Boyd
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Get access

Abstract

In this paper we report the growth of thin titanium oxide films on Si (100) and quartz at low temperatures (≤350°C) by photo-induced chemical vapor deposition (photo-CVD) with 222 nm UV radiation using a novel injection liquid source, which overcomes the reproducible problem in conventional bubblers. The properties of the films formed have been studied using ellipsometry, UV spectrophotometry and Fourier transform infrared spectroscopy (FTIR) measurements. Nanostructured films were observed by atomic force microscopy (AFM). It was found that crystalline TiO2 films could be formed at deposition temperatures as low as 210°C by x-ray di ffraction (XRD). The influence of the deposition temperature on the film is discussed. The refractive index as high as 2.5 can be obtained at a deposition temperature of 350°C, while an optical transmittance of between 80-95% in the visible region of the spectrum was obtained at different deposition temperatures. Physical and optical characterization both reveal good film qualities, rendering this technique promising for a wide range of industrial application in low temperature microelectronic and optoelectronic material processing as well as for many heat sensitive compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Lutterodt, K. Evans and Timp, G., Nature, 399, 758 (1999).Google Scholar
2 Semiconductor Industry Association, The National Technology Roadmap for Semiconductors 7178 (Sematech Austin, 1997)Google Scholar
3 Schulz, M., Nature, 399, 729 (1999).Google Scholar
4 Lucovsky, G. and Philips, J.C., Mat. Res. Soc. Symp. Proc. 567, 201 (1999). H. Shin, M.R. Guire, A.H. Heuer, J. Appl. Phys. 83, 3311 (1998).Google Scholar
5 Shin, H., Guire, M.R., Heuer, A.H., J. Appl. Phys. 83, 3311 (1998).Google Scholar
6 Fukuda, H., Namioka, S., Miura, M., Ishikawa, Y., Yoshino, M., Nomura, S., Jpn. J. Appl. Phys. 38, 6034 (1999).Google Scholar
7 Gan, J.-Y., Chang, Y.C. and Wu, T.B., Appl. Phys. Lett. 72, 332 (1996).Google Scholar
8 bahtat, A., Bouderbala, M., Bahtat, M., Bouazaoui, M., mugnier, J., druetta, M., Thin solid Films 323, 59 (1998).Google Scholar
9 Ha, H.K., Yoshimoto, M., Koinuma, H., Moon, B.K., Ishiwara, H., Appl. Phys. Lett. 68, 2965 (1996).Google Scholar
10 Zhang, J.-Y. and Boyd, I.W., Appl. Phys. Lett. 77 (2000) 3574.Google Scholar
11 Zhang, J.-Y., Boyd, I.W., Mooney, M.B., Hurley, P.K., Beechinor, J.T., O'Sullivan, B.J., Kelly, P.V., Crean, G.M., J.-P. Senateur, Jimenez, C., Paillous, M., Appl. Phys. A: Mater. Sci. Process. 70, 647 (2000).Google Scholar
12 Zhang, J.-Y., Boyd, I.W., Mooney, M.B., Hurley, P.K., O'Sullivan, B.J., Beechinor, J.T., Kelly, P.V., Crean, G.M., Paillous, M., Jimenez, C. and Sénateur, J.-P., Mat. Res. Soc. Symp. Proc., 567, 397 (1999).Google Scholar
13 Gladfelter, W.L., Taylor, C.J., Gilmer, D.C., Colombo, D.G., Wilk, G.D., Campbell, S.A., Roberts, J., Mat. Res. Soc. Sypm. Proc. Vol. 567, 349 (1999).Google Scholar
14 Palik, A., Handbook of Optical Constants (New York, Academic), 1985.Google Scholar
15 Tauc, J., Grigorovich, R., Vancu, A., Phys. Stat. Sol. 15 (1966) 627.Google Scholar
16 Erkov, V.G., Devyatova, S.F., Molodstova, E.L., Malsteva, T.V., Yanovskii, U.A., Appl. Surf. Sci. 166 (2000) 51.Google Scholar
17 Grahn, J.V., Linder, M., Fredriksson, E., J. Vac. Sci. Technol. A16, 2495 (1998).Google Scholar
18 Kim, H., Gilmer, D.C., Campbell, S.A. and Polla, D.L., Appl. Phys. Lett. 69, 3860 (1996).Google Scholar