Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T15:37:13.516Z Has data issue: false hasContentIssue false

Synthesis of Zeolite as Ordered Multi-Crystal Arrays using Uniformly Aligned Polyurethane as Templates

Published online by Cambridge University Press:  15 March 2011

Jin Seok Lee
Affiliation:
Department of Chemistry, Sogang University, Seoul 121-742, Korea
Yun-Jo Lee
Affiliation:
Department of Chemistry, Sogang University, Seoul 121-742, Korea
Eunju Lee Tae
Affiliation:
Department of Chemistry, Sogang University, Seoul 121-742, Korea
Yong Soo Park
Affiliation:
Department of Chemistry, Sogang University, Seoul 121-742, Korea
Kyung Byung Yoon
Affiliation:
Department of Chemistry, Sogang University, Seoul 121-742, Korea
Get access

Abstract

Two types of glass plates coated with uniformly aligned polyurethane films were produced by repeating the cycles of the alternative exposures of the glass plates to 1,4-phenylene diisocyanate (PDI) and 2-butyne-1,4-diol (BDO) and to PDI and terephthalic acid bis-(2-hydroxy ethyl) ester (TBE) for 500 times at elevated temperatures. The glass plates coated with uniformly aligned poly-(PDI-BDO)500 (500 represents the number of the cycle) produced monolayers of closely packed 2D arrays of silicalite-1 crystals with the average size of 370 × 200 × 500 nm on the glass plates upon immersion of the glass plates into a dense gel consisting of tetraethylorthosilicate (TEOS), tetrapropylammonium hydroxide (TPA+OH-), and water (mole ratio = 7:1.5:330) followed by the hydrothermal reaction at 180°C for 2 h. The silicalite-1 crystals were aligned with the c-axes perpendicular to the substrate plane. Upon switching the polymer from poly-(PDI-BDO)500 to poly-(PDI-TBE)500 the orientations of the silicalite-1 crystals in the 2D arrays changed from c to a axes perpendicular to the substrate. This report therefore demonstrates that the uniformly aligned polyurethane films serve as the templates for the growth of closely packed multi-crystal arrays of silicalite-1 in uniform orientations and the nature of the polyurethane film affects the resulting orientations of the crystals. We propose that the supramolecularly organized organic-inorganic composites consisting of the hydrolyzed organic products and the seed crystals responsible for the above phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ozin, G. A., Kuperman, A., Stein, A., Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 359 (1989).Google Scholar
2. Ozin, G. A., Stein, A., Stucky, G. D., Godber, J. P., J. Inclusion Phenom. 6, 379 (1990).Google Scholar
3. Borja, M., Dutta, P. K., Nature 362, 43 (1993).Google Scholar
4. Sykora, M., Kincaid, J. R., Nature 387, 162 (1997).Google Scholar
5. Kim, Y. I., Keller, S. W., Krueger, J. S., Yonemoto, E. H., Saupe, G. B., Mallouk, T. E., J. Phys. Chem. B 101, 2491 (1997).Google Scholar
6. Rolison, D. R., Bessel, C. A., Acc. Chem. Res. 33, 737 (2000).Google Scholar
7. Herron, N., Wang, Y., Eddy, M. M., Stucky, G. D., Cox, D. E., Moller, K., Bein, T., J. Am. Chem. Soc. 111, 530 (1989).Google Scholar
8. Bein, T., Enzel, P., Angew. Chem. Int. Ed. Engl. 12, 1737 (1989).Google Scholar
9. Grubert, G., Stockenhuber, M., Tkachenko, O. P., Wark, M., Chem. Mater. 14, 2458 (2002).Google Scholar
10. Calzaferri, G., Pauchard, M., Maas, H., Huber, S., Khatyr, A., Schaafsma, T., J. Mater. Chem. 12, 1 (2002).Google Scholar
11. Cox, S. D., Gier, T. E., Stucky, G. D., Bierlein, J., J. Am. Chem. Soc. 110, 2986 (1988).Google Scholar
12. Kim, H. S., Lee, S. M., Ha, K., Jung, C. S., Lee, Y.-J., Chun, Y.S., Kim, D.S., Rhee, B. K., Yoon, K. B., J. Am. Chem. Soc. 126, 673 (2004).Google Scholar
13. Vietze, U., Krauβ, O., Laeri, F., Ihlein, G., Schüth, F., Limburg, B., Abraham, M., Phys. Rev. Lett. 81, 4628 (1998).Google Scholar
14. Lai, Z., Bonilla, G., Diaz, I., Nery, J. G., Sujaoti, K., Amat, M. A., Kokkoli, E., Terasaki, O., Thompson, R. W., Tsapatsis, M., Vlachos, D. G., Science 300, 456 (2003).Google Scholar
15. Davis, M. E., Nature 417, 813 (2002).Google Scholar
16. Kulak, A., Lee, Y.-J., Park, Y. S., Yoon, K. B., Angew. Chem. Int. Ed. 39, 950 (2000).Google Scholar
17. Choi, S. Y., Lee, Y.-J., Park, Y. S., Ha, K., Yoon, K. B., J. Am. Chem. Soc. 122, 5201 (2000).Google Scholar
18. Lee, G. S., Lee, Y.-J., Ha, K., Yoon, K. B., Tetrahedron 56, 6965 (2000).Google Scholar
19. Lee, G. S., Lee, Y.-J., Yoon, K. B., J. Am. Chem. Soc. 123, 9769 (2001).Google Scholar
20. Chun, Y. S., Ha, K., Lee, Y.-J., Lee, J. S., Kim, H. S., Park, Y. S., Yoon, K. B., Chem. Comm. 17, 1846 (2002).Google Scholar
21. Ha, K., Lee, Y.-J., Lee, H. J., Yoon, K. B., Adv. Mater. 12, 1114 (2000).Google Scholar
22. Ha, K., Lee, Y.-J., Jung, D.-Y., Lee, J. H., Yoon, K.B., Adv. Mater. 12, 1614 (2000).Google Scholar
23. Ha, K., Lee, Y.-J., Chun, Y. S., Park, Y. S., Lee, G. S., Yoon, K. B., Adv. Mater. 13, 594 (2001).Google Scholar
24. Park, J. S., Lee, G. S., Lee, Y.-J., Park, Y. S., Yoon, K. B., J. Am. Chem. Soc. 124, 13366 (2002).Google Scholar
25. Park, J. S., Lee, Y.-J., Yoon, K. B., J. Am. Chem. Soc. 126, 1934 (2004).Google Scholar
26. Kulak, A., Park, Y. S., Lee, Y.-J., Chun, Y. S., Ha, K., and Yoon, K. B., J. Am. Chem. Soc. 122, 9308 (2000).Google Scholar
27. Lee, G. S., Lee, Y.-J., Ha, K., Yoon, K. B., Adv. Mater. 13, 1491 (2001).Google Scholar
28. Mann, S., Nature 365, 499 (1993).Google Scholar
29. Dujardin, E., Mann, S., Adv. Eng. Mater. 4, 461 (2002).Google Scholar
30. Addadi, L., Weiner, S., Angew. Chem. Int. Ed. Engl. 31, 153 (1992).Google Scholar
31. Weiner, S., Addadi, L., J. Mater. Chem. 7, 689 (1997).Google Scholar
32. Lee, Y.-J., Lee, J. S., Park, Y. S., Yoon, K. B., Adv. Mater. 13, 1259 (2001).Google Scholar
33. Lee, J. S., Lee, Y.-J., Tae, E. L., Park, Y. S., Yoon, K. B., Science 301, 818 (2003).Google Scholar
34. Yamaguchi, M., Takata, T., Endo, T., J. Org. Chem. 55, 1490 (1990).Google Scholar
35. Pavia, D. L., Lampman, G. M., Kriz, G. S., Introduction to Spectroscopy (Saunders College Publishing, Orlando, 1996).Google Scholar
36. Treacy, M. M. J., Higgins, J. B., Collection of Simulated XRD Powder Patterns for Zeolites (Elsevier, Amsterdam, 2001).Google Scholar
37. Kirschhock, C. E. A., Ravishankar, R., Jacobs, P. A., Martens, J. A., J. Phys. Chem. 103, 11021 (1999).Google Scholar
38. Kirschhock, C. E. A., Kremer, S. P. B., Grobet, P. J., Jacobs, P. A., Martens, J. A., J. Phys. Chem. 106, 4897 (2002).Google Scholar
39. Koegler, J. H., Bekkum, H. van, Jansen, J. C., Zeolites 19, 262 (1997).Google Scholar
40. Caro, J. et al. , Adv. Mater. 4, 273 (1992).Google Scholar
41. Feng, S., Bein, T., Nature 368, 834 (1994).Google Scholar
42. Feng, S., Bein, T., Science 265, 1839 (1994).Google Scholar
43. Calzaferri, G. et al. , J. Mater. Chem. 12, 1 (2002).Google Scholar
44. Vietze, U. et al. , Phys. Rev. Lett. 81, 4628 (1998).Google Scholar