Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:48:20.274Z Has data issue: false hasContentIssue false

Detection of Pinholes in Ultrathin Films by Magnetic Coupling

Published online by Cambridge University Press:  21 March 2011

W. F. Egelhoff Jr
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899
L. Gan
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899
P. J. Chen
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899
C. J. Powell
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899
R. D. Mcmichael
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899
R. A. Fry
Affiliation:
National Institute of Standards and Technology Gaithersburg, MD 20899
G. Beach
Affiliation:
Center for Magnetic Recording ResearchUniversity of California at San DiegoLa Jolla, CA 92093
D. Martien
Affiliation:
Center for Magnetic Recording ResearchUniversity of California at San DiegoLa Jolla, CA 92093
A. E. Berkowitz
Affiliation:
Center for Magnetic Recording ResearchUniversity of California at San DiegoLa Jolla, CA 92093
Get access

Abstract

When two magnetic films are separated by a nonmagnetic film, pinholes in the nonmagnetic film can allow direct contact and, thereby, direct magnetic exchange coupling between the two magnetic films. We have studied this coupling by having one of the magnetic films pinned and leaving the other free to switch at low field. The pinning is accomplished with test structures based on exchange bias and synthetic antiferromagnetic layers. Since the pinning strength increases sharply at low temperatures but orange-peel coupling does not, low-temperature (77 K) measurements appear to identify whether an observed coupling arises primarily from magnetic coupling through pinholes or primarily from orange-peel roughness. Our measurements appear to indicate that the observed coupling arises primarily from magnetic coupling through pinholes for Cu films less than 2.1 nm thick and for Al2O3films less than 0.6 nm thick but primarily from roughness-induced (orange-peel) magnetostatic coupling for larger thicknesses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bobo, J. F., Piecuch, M., Snoeck, E., J. Magn. Magn. Mater. 126, 440 (1993); S. K. J. Lenczowski, C. Schonenberger, M. A. M. Gijs, and W. J. M. DeJonge, J. Magn. Magn. Mater. 148, 455 (1995); M. T. Kief, J. Bresowa, and Q. Leng, J. Appl. Phys. 79, 4766 (1996); H. Kikuchi, J. F. Bobo, and R. L. White, IEEE Trans. Mag. 33, 3583 (1997); F. Stobiecki, T. Lucinski, R. Gontarz, M. Urbaniak, Mater. Sci. For. 287, 513 (1998); J. F. Bobo, H. Kikuchi, O. Redon, E. Snoeck, M. Piecuch, R. L. White, Phys. Rev. B 60, 4131 (1999 ); T. Cohen, J. Yahalom, W. D. Kaplan, Rev. Anal. Chem. 18, 279 (1999).; D. Allen, R. Schad, G. Zangari, I. Zana, D. Yang, M. C. Tondra, and D. Wang, J. Vac. Sci. Technol. A 18, 1830 (2000); D. Allen, R. Schad, G. Zangari, I. Zana, D. Yang, M. C. Tondra, and D. Wang, J. Appl. Phys. 87, 5188 (2000); B. J. Jönsson-Åkerman, R. Escudero, C. Leighton, S. Kim, I. K. Schuller, and D. A. Rabson, Appl. Phys. Lett. 77, 1870 (2000); B. Szymanski and F. Stobiecki, Acta Phys. Pol. A 97, 535 (2000); D. Allen, R. Schad, G. Zangari, I. Zana, D. Yang, M. C. Tondra, and D. Wang, Appl. Phys. Lett. 76, 607 (2000); M. F. Gillies and A. E. T. Kuiper, J. Appl. Phys. 88, 5894 (2000); H. Boeve, J. De Boeck, and G. Borghs, J. Appl. Phys. 89, 482 (2001); D. X. Yang, B. Shashishekar, H. D. Chopra, P. J. Chen and W. F. Egelhoff, J. Appl. Phys., submitted.Google Scholar
2. Platt, C. L., McCartney, M. R., Parker, F. T., and Berkowitz, A. E., Phys. Rev. B 61, 9633 (2000)Google Scholar
3. Egelhoff, W. F. Jr, Ha, T., Misra, R.D.K., Kadmon, Y., Nir, J., Powell, C. J., Stiles, M. D., McMichael, R. D., Lin, C.-L., Sivertsen, J. M., Judy, J. H., Takano, K., Berkowitz, A. E., Anthony, T. C., and Brug, J. A., J. Appl. Phys., 78, 273 (1995);W. F. Egelhoff, Jr., P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, C.-L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano and A. E. Berkowitz, J. Appl. Phys. 80, 5183 (1996); W. F. Egelhoff, Jr., P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, J. H. Judy, K. Takano, and A. E. Berkowitz, J. Appl. Phys., 82, 6142 (1997)Google Scholar
4. Kools, J. C. S., Kula, W., Mauri, D., Lin, T., J. Appl. Phys. 85, 4466 (1999); B. D. Schrag, A. Anguelouch, S. Ingvarsson, G. Xiao, Y. Lu, P. L. Trouilloud, A. Gupta, R. A. Wagner, W. J. Gallagher, P. M. Rice, and S. S. P. Parkin, Appl. Phys. Lett. 77, 2373 (2000).Google Scholar
5. Moodera, J. S., Kim, T. H., Tanaka, C., and Groot, C. H. de, Phil. Mag. B 80, 195 (2000).Google Scholar
6. Egelhoff, W. F. Jr, Chen, P. J., Powell, C. J., Stiles, M. D., McMichael, R. D., Judy, J. H., Takano, K., and Berkowitz, A. E., J. Appl. Phys., 82, 6142 (1997)Google Scholar