Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:04:23.124Z Has data issue: false hasContentIssue false

Materials Issues In X-Ray Lithography

Published online by Cambridge University Press:  15 February 2011

E.A. Dobisz
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
M. C. Peckerar
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
W. Chut
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
K. Rheet
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
L. S. Shirey
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
C. R. K. Marrian
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
R. E. Salvino
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
K. Foster
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
J. Kosokowski
Affiliation:
U.S. Naval Research Laboratory Electronics Science And Technology Division Washington D.C., 20375
Get access

Abstract

In this paper, an outline of materials-related activities in the national X-Ray Lithography Program is given. The program is directed towards the development of sub-quarter micron design-rule x-ray lithography together with the ancillary technologies required to fabricate defect-free x-ray masks. Work done at the Naval Research Laboratory is highlighted and used for examples. Most materials related work occurs in conjunction in the x-ray mask fabrication pro. cess. Topics discussed include electron beam-matter interaction in the mask patterning process, membane fabrication, stress control in thin membranes, reactive-ion etching of absorber-layers, mask inspection and repair.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Moore, G.E., “Progress In Digital Electronics,” Proc. IEEE IEDM, IEEE cat. no. 75CH1023-1 ED, p.11(1975).Google Scholar
[2] Gordon, E.I., “Pathways and Pitfalls In Device Lithography,” Proc. IEEE IEDM, IEEE cat. no. 75CH1023-1 ED, p.11(1975).Google Scholar
[3] Peckerar, M.C., Maldonado, J.R., “X-Ray Lithography - An Overview,” to appear, IEEE Proc., Sept. 1993.Google Scholar
[4] Viswanathan, R., Bright, A., Seeger, D., Bucelot, T., Angello, A., Warlaumont, J., Petrillo, K., Franch, R., Brunner, T., Polcari, M., Guardia, R. Della, Puisto, D., “Fabrication Of High Performance 512kb SRAMs In A 0.25 μm CMOS Technology Using X-Ray Lithography,” To Be Published, J. Vac. Sci. Technol. B Nov./Dec.(1993).CrossRefGoogle Scholar
[5] Dammel, R., Diazonapthoquinone-Based Resists, Vol. TT 11, SPIE Press, Bellingham, WA (1993).CrossRefGoogle Scholar
[6] Early, K., Tennant, D.M., Jeon, D.Y., Mulgrew, P.P., MacDowell, A.A., Wood, O.R. II, “Characterization of AZ PNI14 Resist For High Resolution Using Electron-Beam And Soft-XRay Projection Lithographies,” J. Vac.Sci. Technol. B 10(6), p.2600(1992).Google Scholar
[7] Schnur, J.M., Peckerar, M.C., Marrian, C.R.K., Schoen, P.E., Calvert, J.M., Georger, J., US Patent 5,077,085(1991) and US Patent 5,079,600(1992).Google Scholar
[8] Calvert, J.M., Dulcey, C.S., Georger, J.H., Peckerar, M.C., Schnur, J.M., Schoen, P.E., Calabrese, G.S., Sricharoenchaikit, P., “New Surface Imaging Techniques For Sub-0.5 Micrometer Optical Lithography,” Sol. St. Technol., vol.34, p. 77(1991).Google Scholar
[9] Calvert, J.M., Koloski, T.S., Dulcey, C.S., Dressick, W.J., Peckerar, M.C., Cerrina, F., Taylor, J. W., Suh, D., Wood, O.R. I, MacDowell, A.A., D'Sousza, R., “Soft X-ray Lithography (14nm) With Ultrathin Imaging Layers And Selective Electrodless Metallization,” Proc. SPIE, vol.1924, SPIE Press(1993).Google Scholar
[10] Marrian, C.R.K., Dobisz, E.A., Calvert, J.M., ”High Resolution Patterning With The STM,”, to be published in the proceedings of Atomic And Nanometer Scale Material Modification: Fundamentals and Applications, Avouris, Ph. ed., Kluwer Academic, Dordrecht, Netherlands 1993).Google Scholar
[11] Berry, A.K., Graziano, K.A., Thompson, S.D., Taylor, J.W., Suh, D., Plumb, D., “Chemically Amplified Resists For X-Ray and E-Beam Lithography,” Proc. SPIE, vol.1465, p.210(1991).Google Scholar
[12] Celler, G.K., Biddick, C., Frackoviak, J., Jurgensen, C.W., Kola, R.R., Novembre, A.E., Trimble, L.E., Tennant, D.M., “Masks For X-Ray Lithography With A Point Source Stepper,” J.Vac.Sci. Technol. B 10(6), p.3186(1992).Google Scholar
[13] Chaker, M., Bouily, S., Diawara, Y., Khakani, M.A. El, Gat, E., Jean, A., Lafontaine, H., Pepin, H., Voyer, J., Kieffer, J.C., “X-Ray Mask Development Based On SiC Membrane and W Absorber,” J. Vac.Sci. Technol. B 10(6), p.3191(1992).Google Scholar
[14] Lochel, B., Huber, H.L., Klages, C.P., Shafer, L., Bluhm, A., “Diamond Membrane Based X-Ray Masks,” J. Vac.Sci. Technol. B 10(6), p.3217(1992).CrossRefGoogle Scholar
[15] McCord, M.A., Viswanathan, R., Hohn, F.J., Wilson, A.D., Nauman, R.,. Newman, T.H., “100kV Thermal Field Emission Electron Beam Lithography Tool For High-Resolution X-Ray Mask Printing,” J. Vac.Sci. Technol. B 10(6), p.2764(1992).Google Scholar
[16] Dobisz, E.A., Marrian, C.R.K., Shirey, L.M., Ancona, M., “Thin Silicon Nitride Films For Reduction Of Linewidth And Proximity Effects In Electron-Beam Lithography,” J. Vac.Sci. Technol. B 10(6), p. 3067(1992).Google Scholar
[17] Rhee, K.W., Ma, D.I., Peckerar, M.C., Ghanbari, R.A., Smith, H.I., “Proximity Effect Reduction In X-Ray Mask Making Using Thin Silicon dioxide Layers,” J. Vac.Sci. Technol. B 10(6), p. 3062(1992).Google Scholar
[18] Chang, T.H.P., Kern, D.P., Muray, L.P., Arrayed Miniature Electron Beam Columns For High Throughput Sub-100nm Lithography,” J. Vac.Sci. Technol. B 10(6), p. 2743(1992).Google Scholar
[19] Marrian, C.R.K., Dobisz, E. A., Dagata, J.A., “Electron Beam Lithography With The Scanning Tunneling Microscope,” J. Vac.Sci. Technol. B 10(6), p. 2877(1992).Google Scholar
[20] Dobisz, E.A., Marrian, C.R.K., “Sub-30nm Lithography In A Negative, Electron Beam Resist With A Vacuum Scanning Tunneling Microscope,” Appl. Phys. Lett., vol.58(22) p. 2526(1991).Google Scholar
[21] Chiu, S.L., Acosta, R.E., “Electro-deposition Of Low Stress Gold For X-Ray Masks,” J. Vac.Sci. Technol. B 8(6), p. 1589(1990).Google Scholar
[22] Ku, Y.C., Ng, Lee-Peng, Carpenter, R., Lu, K., Smith, H.I., Haas, L.E., Plotnick, I., “In Situ Stress Monitoring And Deposition Of Zero-Stress W For X-Ray Masks,” J. Vac.Sci. Technol. B 9(6), p. 3297(1991).Google Scholar
[23] Oda, M., Yoshihara, H., “Materials and Fabrication Processes For Highly Accurate X-Ray Masks, Spring Meeting Of The Materials Research Society, San Fransisco, CA April 1216, 1993.Google Scholar
[24] Meisburger, W.D., Desai, A., Brodie, A.D., Requirements And Performance Of An Electron- Beam Column Designed For X-Ray Mask Inspection,” J. Vac.Sci. Technol. B 9(6), p. 3010(1991).CrossRefGoogle Scholar
[25] Stewart, D., Fuchs, J., Grant, R.A., Plotnik, I., “Defect Repair For Gold Absorber/Silicon Membrane X-Ray Masks,” Proc. SPIE, vol. 1465, p. 64(1991).Google Scholar