Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T01:40:34.163Z Has data issue: false hasContentIssue false

Effect of Low Temperature Annealing on High Field Magnetoresistance and Hall effect in (Ga, Mn)As Dilute Magnetic Semiconductors

Published online by Cambridge University Press:  01 February 2011

K. Ghosh
Affiliation:
Department of Physics, Astronomy & Materials Science, Southwest Missouri State University, Springfield, MO 65804, U.S.A.
Mohammad Arif
Affiliation:
Department of Physics, Astronomy & Materials Science, Southwest Missouri State University, Springfield, MO 65804, U.S.A.
T. Kehl
Affiliation:
Department of Physics, Astronomy & Materials Science, Southwest Missouri State University, Springfield, MO 65804, U.S.A.
R. J. Patel
Affiliation:
Department of Physics, Astronomy & Materials Science, Southwest Missouri State University, Springfield, MO 65804, U.S.A.
S. R. Mishra
Affiliation:
Department of Physics, the University of Memphis, Memphis, TN 38152, U.S.A.
J. G. Broerman
Affiliation:
Department of Physics, Astronomy & Materials Science, Southwest Missouri State University, Springfield, MO 65804, U.S.A.
Get access

Abstract

In this paper we report the effect of low temperature annealing on the high field magnetotransport properties of epitaxial thin films of (Ga, Mn)As Dilute Magnetic Semiconductor (DMS) with low concentration (1.5 %) of Mn doping, which results in a ferromagnetic insulator. Annealing at an optimal temperature enhances the conductivity, carrier concentration, and ferromagnetic transition temperature. The field dependence of magnetoresistance is different below and above the ferromagnetic transition temperature. An attempt is made to analyze the data using a theoretical model proposed by Kaminski and Das Sarma [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaminski, A. and Das Sarma, S., Phys. Rev. B 68, 235210, (2003).Google Scholar
2. Wolf, S. A., Science 294, 1488 (2001).Google Scholar
3. Semiconductor Spintronics and quantum computation” edited by D. Loss and N. Samrath, Springer Verlag, 2002.Google Scholar
4. Schulthess, T. C. and Butler, W. H., Journal of Applied Physics, 89 7021 (2001).Google Scholar
5. Thaler, G. T. et al, Appl. Phys. Lett, 80, 3964 (2002).Google Scholar
6. Park, Sang Eon et al, Appl. Phys. Lett. 80, 4187 (2002).Google Scholar
7. Matsumoto, Yuji, Murakami, Makoto, Shono, Tomoji, Hasegawa, Tetsuya, Fukumura, Tomoteru, Kawasaki, Masashi, Ahmet, Parhat, Chikyow, Toyohiro, Koshihara, Shin-ya, Koinuma, Hideomi, Science 291, 854 (2002).Google Scholar
8. Jung, S. W., An, S.-J., Yi, Gyu-Chul, Jung, C. U., Sung-Ik Lee and Sunglae Cho Appl. Phys. Lett. 80, 4561 (2002).Google Scholar
9. Kimura, H., Fukumura, T., Kawasaki, M., Inaba, K. and Hasegawa, T. and Koinuma, H., Appl. Phys. Lett 80, 94 (2002).Google Scholar
10. Potashnik, S. J., Ku, K. C., Mahendrian, R., Chun, S. H., Berry, J. J., Samrat, N., and Schiffer, P., Appl. Phys. Lett., 79, 1495 (2001).Google Scholar
11. Matsukura, F., Ohno, H., Shen, A., and Sugawara, Y., Phys. Rev. B 57, R2037 (1998).Google Scholar
12. Ohno, H., matsukura, F., Omiya, T. and Akiba, N., J. Appl. Phys., 85, 4277 (1999).Google Scholar
13. Alvarez, G. and Dagotto, E., Phys. Rev. B 68, 045202 (2003).Google Scholar
14. Petukhov, A. G. and Foygel, M., Phys. Rev. B 62, 520 (2001)Google Scholar
15. Hayashi, T., Hashimoto, Y., Katsumoto, S., and Iye, Y., Appl. Phys. Lett, 78, 1691 (2001).Google Scholar
16. Edmonds, K. W., Wang, K. Y., campion, R. P., Neumann, A. C., Farely, N.R.S., Gallagher, B. L., and Foxon, C. T., Appl. Phys. Lett. 81, 4991 (2002).Google Scholar
17. Jeffrey Snyder, G., Beasley, M. R., gabllle, T. H., Hiskes, R., and Dicarolis, S., Appl. Phys. Lett. 69, 4254 (1996).Google Scholar
18. Rozenberg, G., Hearne, G., Pasternak, M., Metcalf, P. A., and Honig, J. M., Phys. Rev. B 53, 6482 (1996).Google Scholar
19. Ogale, S. B., Ghosh, K., Sharma, R. P., Greene, R. L., Ramesh, R., and Venkatesan, T., Phys. Rev. B 57, 7823, (1998)Google Scholar
20. De Teresa, J. M., Ibara, M. R., Algarabel, P. A., Ritter, C., Marquina, C., Blasco, J., Garcia, J., del Moral, A., and Arnold, Z., Nature (London) 386, 256 (1997).Google Scholar
21. O'Donnell, J., Onellion, M., Rzchowski, M.S., Eckstein, J. N., and Bozovik, I., Phys. Rev. B 54, R6841 (1996).Google Scholar
22. Hayasi, T., Tanaka, M. and Nishinaga, T., J. Appl. Phys. 81, 4865 (1997).Google Scholar