Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T08:56:18.312Z Has data issue: false hasContentIssue false

Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices

Published online by Cambridge University Press:  10 February 2011

T. Koga
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
X. Sun
Affiliation:
Department of Physics and Cambridge, MA 02139
S. B. Cronin
Affiliation:
Department of Physics and Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Department of Physics and Cambridge, MA 02139 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

A large enhancement in the thermoelectric figure of merit for the whole superlattice, Z3DT, is predicted for short period GaAs/AlAs superlattices relative to bulk GaAs. Various superlattice parameters (superlattice growth direction, superlattice period and layer thicknesses) are explored to optimize Z3DT, including quantum wells formed at various high symmetry points in the Brillouin zone. The highest room temperature Z3DT obtained in the present calculation is 0.41 at the optimum carrier concentration for either (001) or (111) oriented GaAs(20 Å)/AIAs(20 Å) superlattices, which is about 50 times greater than the corresponding ZT for bulk GaAs obtained using the same basic model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993); L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993);CrossRefGoogle Scholar
[2] Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, R10493 (1996); T. C. Harman, D. L. Spears, and M. J. Manfra, J. Electron. Mater. 25, 1121 (1996); T. C. Harman, D. L. Spears, D. R. Calawa, S. H. Groves, and M. P. Walsh, Proceedings for 16th International Conference on Thermoelectrics page 416 (1997).CrossRefGoogle Scholar
[3] Hicks, Lyndon D.. The effect of quantum-well superlattices on the thermo-electric figure of merit. PhD thesis, Massachusetts Institute of Technology, June 1996. Department of Physics.Google Scholar
[4] Koga, T., Sun, X., Cronin, S. B. and Dresselhaus, M. S., Appl. Phys. Lett. 73, 2950 (1998), and references therein.CrossRefGoogle Scholar
[5] Sofo, J. O. andMahan, G. D., Appl. Phys. Lett. 65, 2690 (1994).CrossRefGoogle Scholar
[6] Broido, D. A. and Reinecke, T. L., Appl. Phys. Lett. 67, 100 (1995); D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 67, 1170 (1995); P.J. Lin-Chung and T. L. Reinecke, Phys. Rev. B 51, 13244 (1995); D. L. Broido and T. L. Reinecke, Phys. Rev. B 51, 13797 (1995); D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 70, 2834 (1997);CrossRefGoogle Scholar
[7] Rowe, D. M. and Min, G., Proceedings for 13th International Conference on Thermoelectrics page 339 (1994); Nishio, Y. and Hirano, T., Jpn. J. Appl. Phys., Part 1 36, 170 (1997).Google Scholar
[8] Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., and El-Masry, N., Journal of Crystal Growth 170, 817 (1997).CrossRefGoogle Scholar
[9] Harman, T. C., Spears, D. L., and Walsh, M. P., Abstract for the 40th Electronic Materials Conf., Charlottesville, J. Electron. Mater. Lett. 27, No. 7, 44 (1998); T. C. Harman, D. L. Spears, and M. P. Walsh, J. Electron. Mater. Lett. 28, Li (1999).Google Scholar
[10] Davies, J. H., The Physics of Low-Dimensional Semiconductors (Cambridge University Press, New York, 1998).p.91.Google Scholar
[11] Kittel, C., Introduction to Solid State Physics 7th edition (John Wiley & Sons, Inc., New York, 1996). p. 180.Google Scholar
[12] Adachi, S., J. Appi. Phys. 58, R1 (1985).CrossRefGoogle Scholar
[13] Landolt-Bornstein, . Numerical Data and Functional Relationships in Science and Technology. New Series. Vol.22a (Springer-Verlag, Berlin, 1987).Google Scholar
[14] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (W. B Saunders Company, Philadelphia, 1976). chapters 12, 13.Google Scholar
[15] Chen, Gang, Trans. ASME, J. Heat Trans. 119, 220 (1997).CrossRefGoogle Scholar