Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T04:17:48.379Z Has data issue: false hasContentIssue false

Selective-Area Growth of Metal Oxide Films Induced by Patterned Excimer Laser Surface Photolysis

Published online by Cambridge University Press:  25 February 2011

R. R. Kunz
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
D. J. Ehrlich
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
J. Melngailis
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
M. W. Horn
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
Get access

Abstract

An excimer-laser-based method for achieving selective-area oxide growth on polymer surfaces is described. This method uses high photon energy (6.4 eV, 7.9 eV) excimer laser irradiation to change hydrophobic surfaces (surface tension <20 erg/cm2) into hydrophilic surfaces. The hydrophobic growth surfaces are prepared by exposure of a polymer to halogen-containing plasmas. Selective growth is done by simultaneously exposing patterned, laser-modified surfaces to SiC14 and H2O; the reaction takes place only where the H2O adsorbs to form a condensed adlayer. After selective growth, oxygen etching of the polymer results in the desired resist pattern. When used with a plasma-deposited carbon polymer, the result is a new all-dry lithographic process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iscoff, R., Semicond. Inter. 12, 50 (1991).Google Scholar
2. Horn, M. W., Pang, S. W., and Rothschild, M., J. Vac. Sci. Technol. B 8, 1493 (1990).CrossRefGoogle Scholar
3. Rothschild, M. and Forte, T. F., Appl. Phys. Lett. 14, 1790 (1991).Google Scholar
4. Larrabee, G. and Chatterjee, P., Semicond. Inter. 6, 90 (1991).Google Scholar
5. Roland, B., Lombaerts, R., Jakus, C., and Coopmans, F., SPIE Proc. 771, 69 (1987).CrossRefGoogle Scholar
6. Taylor, G. N., Nalamasu, O., and Hutton, R. S., Materials Research Society Symposium Proceedings 158, edited by Bernhardt, A. F., Black, J. G., and Rosenberg, R. (Materials Research Society, Pittsburgh, PA, 1990), pp. 320.Google Scholar
7. Boenig, H. V., in Fundamentals of Plasma Chemistry and Technology, (Technomic Publishing Co., Lancaster, PA, 1988), Chapter 12.Google Scholar
8. Pang, S. W. and Horn, M. W., J. Vac. Sci. Technol. B 8, 1980 (1990).Google Scholar
9. Zisman, W. A., in Contact Angle, Wettability, and Adhesion, Advances in Chemistry Series, Volume 43, edited by Fowkes, F. M. (American Chemical Society, Washington, D. C., 1964) pp. 137.CrossRefGoogle Scholar
10. Rothschild, M., unpublished results.Google Scholar
11. Kakehata, M., Hashimoto, E., Yang, C. H., Nakata, T., Kannari, F., and Obara, M., presented at Microprocess 1991, Tokyo, Japan, 1991.Google Scholar
12. Ehrlich, D. J. and Melngailis, J., Appl. Phys. Lett. 58, 2675 (1990).Google Scholar
13. Awaya, N. and Arita, Y., Jpn. J. Appl. Phys. 25, L24 (1986).Google Scholar
14. Sigsbee, R. A. and Pound, G. M., Adv. Coll. Int. Sci. 1, 335 (1967).CrossRefGoogle Scholar
15. Hautman, J. and Klein, M. L., Phys. Rev. Lett. 67, 1763 (1991).CrossRefGoogle Scholar