Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T15:30:11.267Z Has data issue: false hasContentIssue false

In-Situ Raman Spectroscopy Studies of Room-Temperature and Hydrothermal Reactions

Published online by Cambridge University Press:  13 June 2012

Brendan T. McGrail
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
Laurent J. Jouffret
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
Eric M. Villa
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
Peter C. Burns
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
Get access

Abstract

By contracting with the Parr Instrument Company and Bruker Optical Systems, we have developed a system for continuous monitoring of hydrothermal and room temperature reactions by Raman spectroscopy. Using the uranyl peroxide cage cluster {[UO2(O2)(OH)]16[UO2(OM)2]4}24- (denoted {U20R}) and a coordination polymer made from uranyl ions and 4,4’-biphenyldicarboxylate as model systems, we demonstrate the spectroscopically observable changes associated with reaction progress and crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahill, C.L., Ko, Y., Hanson, J.C., Tan, K., Parise, J.B., Chem. Mater. 10, 1453 (1998)Google Scholar
2. Cahill, C.L., Benning, L.G., Barnes, H.L., Parise, J.B., Chem. Geol. 167, 53 (2000)Google Scholar
3. O’Brien, S., Francis, R.J., Fogg, A., O’Hare, D., Okazaki, N., Kuroda, K., Chem. Mater. 11, 1822 (1999)Google Scholar
4. O’Hare, D., Evans, J.S.O., Fogg, A., O’Brien, S., Polyhedron 19 297 (2000)Google Scholar
5. Tarasov, K.A., Isupov, V.P., Chupakhina, L.E., O’Hare, D., J. Mater. Chem. 14 1443 (2004)Google Scholar
6. Evans, J.S.O., Barlow, S., Wang, H.-V., O’Hare, D., Adv. Mater. 7 163 (1995)Google Scholar
7. Webster, N.A.S., Loan, M.J., Madsen, I.C., Knott, R.B., Kimpton, J.A., Hydrometallurgy 109 72 (2011)Google Scholar
8. Webster, N.A.S., Loan, M.J., Madsen, I.C., Knott, R.B., Brodie, G.M., Kimpton, J.A., J. Crystal Growth 340 112 (2012)Google Scholar
9. Gave, M.A., Canlas, C.G., Chung, I., Iyer, R.G., Kanatzidis, M.G., Weliky, D. P., J. Solid State Chem., 180 2877 (2007)Google Scholar
10. Toth, L.M., Begun, G.M., J. Phys. Chem., 85 547 (1981)Google Scholar
11. Trung, C.N., Begun, G.M., Palmer, D.A., Inorg. Chem., 31 5280 (1992)Google Scholar
12. Frost, R.L., Palmer, S. J., Reddy, B.J., J. Raman Spectrosc. 42 1160 (2010)Google Scholar
13. Zazhogin, A.A., Lutz, H.D., Komyak, A.I., J. Mol. Struct. 482-483 189 (1999)Google Scholar
14. McGlynn, S.P., Smith, J.K., Neely, W.C., J. Chem. Phys. 35 105 (1961)Google Scholar
15. Groenewold, G.S., Gianotto, A.K., McIlwain, M.E., Van Stipdonk, M.J., Kullman, M., Moore, D.T., Polfer, N., Oomens, J., Infante, I., Visscher, L., Siboulet, B., de Jong, W.A. J.Phys. Chem. A., 112 508 (2008)Google Scholar
16. Clark, D.L., Conradson, S.D., Donohoe, R.J., Keogh, D.W., Morris, D.E., Palmer, P.D., Rogers, R.D., Tait, C.D., Inorg. Chem. 38 1456 (1999)Google Scholar
17. Burns, P.C., Kubatko, K.A., Sigmon, G., Fryer, B.J., Gagnon, J.E., Antonio, M.R., Soderholm, L., Angew. Chem. Int. Ed. 44, 2135 (2005)Google Scholar
18. Forbes, T. Z., McAlpin, J.G., Murphy, R., Burns, P.C., Angew. Chem. Int. Ed. 47 2824 (2008)Google Scholar
19. Sigmon, G., Ling, J., Unruh, D.K., Moore-Shay, L., Ward, M., Weaver, B., Burns, P.C., Inorg. Chem. 48 10907 (2009)Google Scholar
20. Ling, J., Qiu, J., Sigmon, G.E., Ward, M., Szymanowski, J.E.S., Burns, P.C., J. Am. Chem. Soc. 132 13395 (2010)Google Scholar
21. Ling, J., Wallace, C.M., Szymanowski, J.E.S., Burns, P.C., Angew. Chem. Int. Ed. 49 7271 (2010)Google Scholar
22. Unruh, D.K., Burtner, A., Pressprich, L., Sigmon, G. E., Burns, P.C., Dalton Trans. 39 5807 (2010)Google Scholar
23. Ling, J., Qiu, J., Szymanowski, J.E.S., Burns, P.C., Chem. Eur. J. 17 2571 (2011)Google Scholar
24. Nyman, M., Rodriguez, M.A., Alam, T.M., Eur. J. Inorg. Chem. 2011 2197 (2011)Google Scholar
25. Sigmon, G.E., Burns, P.C., J. Am. Chem. Soc. 133, 9137 (2011)Google Scholar
26. Unruh, D.K., Ling, J., Qiu, J., Pressprich, L., Baranay, M., Ward, M., Burns, P.C., Inorg. Chem. 50 5509 (2011)Google Scholar
27. Burns, P.C., Miller, M.L., Ewing, R.C., Can. Mineral. 34 845 (1996)Google Scholar
28. Burns, P.C., Can. Mineral. 43 1839 (2005)Google Scholar
29. Locock, A.J., Burns, P.C., J. Solid State Chem. 177 2675 (2004)Google Scholar
30. Lock, A.J., Burns, P.C., J. Solid State Chem. 163 275 (2002)Google Scholar
31. Kirvovichev, S.V., Cahill, C.L., Burns, P.C., Inorg. Chem. 41 34 (2002)Google Scholar
32. Kirvovichev, S.V., Cahill, C.L., Burns, P.C., Inorg. Chem. 42 2459 (2003)Google Scholar
33. Wang, S., Alekseev, E.V., Ling, J., Liu, G., Depmeier, W., Albrecht-Schmitt, T.E., Chem. Mater., 22 2155 (2010)Google Scholar
34. Wang, S., Alekseev, E.V., Stritzinger, J.T., Liu, G., Depmeier, W., Albrecht-Schmitt, T.E., Chem. Mater., 22 5983 (2010)Google Scholar
35. Adelani, P.O., Oliver, A.G., Albrecht-Schmitt, T.E., Cryst. Growth Des. 11 1966 (2011)Google Scholar
36. Nguyen-Tren, C., Palmer, D.A., Begun, G.M., Pfeiffert, C., Mesmer, R.E., J. Solution Chem. 29 101 (2000)Google Scholar
37. Kadleíková, M., Breza, J., Vesselý, M., Microelectron. J. 32 955 (2001)Google Scholar