Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T11:23:33.808Z Has data issue: false hasContentIssue false

Fabrication of Two Dimensional Array of Silica Nanospheres on GaN Using Spin Coating Method and Nomarski Image Processing

Published online by Cambridge University Press:  31 January 2011

Kyoungnae Lee
Affiliation:
kyoungnae.lee@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, West Virginia, United States
hyma yalamanchili
Affiliation:
hyma.yalamanchili@gmail.com, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, West Virginia, United States
J. M. Dawson
Affiliation:
Jeremy.Dawson@mail.wvu.edu, United States
D Korakakis
Affiliation:
Dimitris.Korakakis@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, West Virginia, United States
Get access

Abstract

Large-scale two dimensional ordering of silica nanospheres on GaN substrates was fabricated using spin-coating and observed using Matlab-based Nomarski image processing, which was developed to calculate the surface coverage of 2D and 3D ordering of silica nanospheres on GaN substrates. Optimal spin coating condition and SDS concentration were investigated with Nomarski image processing and an SEM. The details on spin coating process parameters or SDS concentration vs. surface coverage of silica nanospheres on GaN substrate are discussed, along with a theoretical exploration of the effects of nanosphere patterning on photonic crystals fabricated using this method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Oder, T. N., Kim, K. H., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett., 84, 466 (2004).Google Scholar
[2] Min, W. L., Jiang, P., and Jiang, B., Nanotechnology, 19, 475604 (2008).Google Scholar
[3] Hsieh, M. Y., Wang, C. Y., Chen, L. Y., Ke, M. Y., and Huang, J. J., IEEE J. Quantum Electron., 44, 468 (2008).Google Scholar
[4] Ng, W. N., Leung, C. H., Lai, P. T., and Choi, H. W., Nanotechnology, 19, 255302 (2008).Google Scholar
[5] Su, Y. K., Chen, J. J., Lin, C. L., Chen, S. M., Li, W. L., and Kao, C. C., Jpn. J. Appl. Phys., 47, 6706 (2008).Google Scholar
[6] Wang, W., Gu, B., and Liang, L., J. Colloid Interface Sci., 313, 169 (2007).Google Scholar
[7] Lin, S. Y., Chow, E., Johnson, S. G., and Joannopoulos, J. D., Optics Letters, 26, 1903 (2001).Google Scholar
[8] Tolmachev, V. A., Optics and Spectroscopy, 97, 276 (2004).Google Scholar
[9] Jing, C., Jiyu, T., Peide, H., and Junfang, C., J. Semiconductors, 30, 043001 (2009).Google Scholar
[10] Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J. I., and Tamamura, T., Optical and Quantum Electronics, 34, 113 (2002).Google Scholar
[11] Park, J. W., Park, J. H., Koo, H. Y., Na, S. I., Park, S. J., Song, H. Y., Kim, J. W., Kim, W. C., and Kim, D. Y., Jpn. J. Appl. Phys., 47, 5327 (2008).Google Scholar
[12] Long, D. H., Hwang, I. K., and Ryu, S. W., Jpn. J. Appl. Phys., 47, 4527 (2008).Google Scholar
[13] Li, Q., Figiel, J. J., and Wang, G. T., Appl. Phys. Lett., 94, 231105 (2009).Google Scholar