Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-15T13:36:22.329Z Has data issue: false hasContentIssue false

Chronic anthropogenic disturbance as a secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga

Published online by Cambridge University Press:  19 August 2016

FERNANDA M. P. OLIVEIRA
Affiliation:
Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50690–901, Recife, PE, Brazil Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50690–901, Recife, PE, Brazil
JOSÉ DOMINGOS RIBEIRO-NETO
Affiliation:
Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50690–901, Recife, PE, Brazil
ALAN N. ANDERSEN
Affiliation:
CSIRO Land &Water, Tropical Ecosystems Research Centre, PMB 44 Winnellie, NT 0822, Australia
INARA R. LEAL*
Affiliation:
Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo s/n, Cidade Universitária, 50690–901, Recife, PE, Brazil
*
*Correspondence: Inara R. Leal Tel: 55-81-21267814 Fax: 55-81-21268348 e-mail: irleal@ufpe.br

Summary

Habitat loss is widely recognized as the major cause of global biodiversity decline, but remaining habitat is increasingly threatened by chronic human disturbances. Using a multi-model averaging approach we examined the association between five chronic disturbance surrogates and the richness and taxonomic and functional composition of ants in Brazilian Caatinga. Using pitfall traps in 47 plots near Parnamirim city (Pernambuco) across two soil types (sand and clay), we recorded 53 species from 27 genera. Ant species richness on sand was slightly higher than on clay, and was negatively related to most surrogates of anthropogenic disturbance. Soil type and human population size were the main predictors of ant species richness. Soil type was the most important predictor of functional group abundance. Taxonomic and functional composition were influenced by soil type and disturbance, but this relationship varied between clay and sandy soils. Ant functional composition showed a weak relationship with disturbance on sandy soils, but on clay soils it showed predictable winner–loser replacement. We attribute the greater effect of disturbance on clay soils to higher intensity of land use, and our study highlights the importance of considering context dependence when evaluating biodiversity responses to disturbance.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at http://dx.doi.org/10.1017/S0376892916000291

References

Ahrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E. & Lewis, S. L. (2010) Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America 107: 1455614561.CrossRefGoogle ScholarPubMed
Andersen, A. N. & Majer, J. D. (2004) Ants show the way down under: invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment 2: 291298.CrossRefGoogle Scholar
Andersen, A. N. & Patel, A. D. (1994) Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98: 1524.CrossRefGoogle ScholarPubMed
Andersen, A. N. (1995) A classification of Australian ant communities based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography 22: 1529.CrossRefGoogle Scholar
Andersen, A. N. (1997) Functional groups and patterns of organization in North American ant communities: a comparison with Australia. Journal of Biogeography 24: 433460.CrossRefGoogle Scholar
Andersen, A. N. (2000) A global ecology of rain forest ants: functional groups in relation to stress and disturbance. In: Ants: Standard Methods for Measuring and Monitoring Biodiversity, eds. Agosti, D., Majer, J. D., Alonso, L. & Shultz, T., pp. 2534. Washington D. C., USA: Smithsonian Institution Press.Google Scholar
Andersen, A. N., Del Toro, I. & Parr, C. L. (2015) Savanna ant species richness is maintained along a bioclimatic gradient of decreasing rainfall and increasing latitude in northern Australia. Journal of Biogeography 42: 23132322.CrossRefGoogle Scholar
Arnan, X., Gaucherel, C. & Andersen, A. N. (2011) Dominance and species co-occurrence in highly diverse ant communities: a test of the interstitial hypothesis and discovery of a three-tiered competition cascade. Oecologia 166: 783794.CrossRefGoogle ScholarPubMed
Beaumont, K. P., Mackay, D. A. & Whalen, M. A. (2012) The effects of prescribed burning on epigaeic ant communities in eucalypt forest of South Australia. Forest Ecology and Management 271: 147157.CrossRefGoogle Scholar
Bestelmeyer, B. T. & Wiens, J. A. (1996) The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecological Applications 6: 12251240.CrossRefGoogle Scholar
Brasil-MMA (2011) Monitoramento do desmatamento nos biomas brasileiros por satélite: Monitoramento do bioma Caatinga. Brasília, Brazil: Ministério do Meio Ambiente.Google Scholar
Burnham, K. P. & Anderson, D. R. (2002) Model selection and inference: a practical information-theoretic approach. New York, USA: Springer.Google Scholar
Connell, J. H. (1978) Diversity in tropical rain forest and coral reefs. Science 199: 13021310.CrossRefGoogle Scholar
Franklin, K. (2012) The remarkable resilience of ant assemblages following major vegetation change in an arid ecosystem. Biological Conservation 148: 96105.CrossRefGoogle Scholar
Gariglio, M. A., Sampaio, E. V. S. B., Cestaro, L. A. & Kageyama, P. Y. (2010) Uso sustentável e conservação dos recursos florestais da caatinga. Brasília, Brazil: Serviço Florestal Brasileiro.Google Scholar
Gelman, A. (2008) Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27: 28652873.CrossRefGoogle ScholarPubMed
Grime, J. P. (1979) Plant strategies and vegetation processes. London, UK: Jon Wiley & Sons.Google Scholar
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. (2011) Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24: 699711.CrossRefGoogle ScholarPubMed
Hereford, J., Hansen, T. F., Houle, D. & Fenster, C. (2004) Comparing strengths of directional selection: how strong is strong? Evolution 58: 21332143.Google ScholarPubMed
Hoffmann, B. D. & Andersen, A. N. (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology 28: 444464.CrossRefGoogle Scholar
Hoffmann, B. D. (2010) Using ants for rangeland monitoring: global patterns in the responses of ant communities to grazing. Ecological Indicators 10: 105111.CrossRefGoogle Scholar
Hölldobler, B. & Wilson, E. O. (1990) The ants. Berlin, London, Paris, Tokyo, Hong Kong: Springer-Verlag.CrossRefGoogle Scholar
IBGE (1985) Atlas Nacional do Brasil: Região Nordeste. Rio de Janeiro, Brazil: Instituto Brasileiro de Geografia e Estatística.Google Scholar
IBGE (2010) Produção agrícola municipal para culturas temporárias e permanentes. Rio de Janeiro, Brazil: Instituto Brasileiro de Geografia e Estatística.Google Scholar
IBGE (2011) Censo demográfico 2010 – Características da população e dos domicílios. Rio de Janeiro, Brazil: Instituto Brasieiro de Geografia e Estatística.Google Scholar
INSA (2012) Sinopse do Censo Demográfico para o Semiárido Brasileiro. Campina Grande, Brazil: Instituto Nacional do Semiárido.Google Scholar
Kaspari, M. & Weiser, M. D. (1999) The size-grain hypothesis and interspecific scaling in ants. Functional Ecology 13: 530538.CrossRefGoogle Scholar
Laurance, W. F., Camargo, J. L. C., Luizao, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., Stouffer, P. C., Williamson, G. B., Benitez-Malvido, J., Vasconcelos, H. L., Van Houtan, K. S., Zartman, C. E., Boyle, S. A., Didham, R. K., Andrade, A. & Lovejoy, T. E. (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation 144: 5667.CrossRefGoogle Scholar
Leal, I. R., Filgueiras, B. K. C., Gomes, J. P., Iannuzzi, L. & Andersen, A. N. (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation 21: 16871701.CrossRefGoogle Scholar
Leal, I. R., Silva, J. M. C., Tabarelli, M. & Lacher, T. E. Jr (2005) Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil, pp. 701706. Oxford, UK: Blackwell Science Inc.Google Scholar
Leal, L. C., Andersen, A. N. & Leal, I. R. (2014) Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia 174 (1): 173181.CrossRefGoogle ScholarPubMed
Leal, L. C., Andersen, A. N. & Leal, I. R. (2015) Disturbance winners or losers? Plants bearing extrafloral nectaries in Brazilian Caatinga. Biotropica 47: 468474.CrossRefGoogle Scholar
Legendre, P., Oksanen, J. & ter Braak, C. J. F. (2011) Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution 2: 269277.CrossRefGoogle Scholar
Magee, L. (1990) R2 measures based on Wald and likelihood ratio joint significance tests. In: The American Statistician, pp. 250253. Abingdon, UK: Taylor & Francis.Google Scholar
Martorell, C. & Peters, E. M. (2005) The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera . Biological Conservation 124: 199207.CrossRefGoogle Scholar
Murcia, C. (1995) Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution 10: 5862.CrossRefGoogle ScholarPubMed
Nagelkerke, N. J. D. (1991) A note on a general definition of the coefficient of determination. Biometrika 78: 691692.CrossRefGoogle Scholar
Neter, J., Wasserman, W. & Kutner, M. H. (1990) Applied linear statistical models. Chicago, USA: Irwin.Google Scholar
Pennington, R. T., Lavin, M. & Oliveira-Filho, A. (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics 40: 437457.CrossRefGoogle Scholar
Core Team, R (2015) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ribeiro, E. M. S., Arroyo-Rodríguez, V., Santos, B. A., Tabarelli, M. & Leal, I. R. (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology 52: 611620.CrossRefGoogle Scholar
Ribeiro, E. M. S., Santos, B. A., Arroyo-Rodríguez, V., Tabarelli, M., Souza, G. & Leal, I. R. (2016) Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97 (6): 15831592.CrossRefGoogle ScholarPubMed
Ribeiro-Neto, J. D., Arnan, X., Tabarelli, M. & Leal, I. R. (2016) Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity and Conservation 25: 943956.CrossRefGoogle Scholar
Sagar, R., Raghubanshi, A. S. & Singh, J. S. (2003) Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India. Forest Ecology and Management 186: 6171.CrossRefGoogle Scholar
Schielzeth, H. (2010) Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103113.CrossRefGoogle Scholar
Shaanker, R. U., Ganeshaiah, K. N., Krishnan, S. A., Ramyar, R., Meera, C., Aravind, N. A., Kumar, A., Rao, D., Vanaraj, G., Ramachandra, J., Gauthier, R., Ghazoul, J., Poole, N. & Chinappa Reddy, B. V. (2004) Livelihood gains and ecological costs of non-timber forest product dependence: assessing the roles of dependence, ecological knowledge and market structure in three contrasting human and ecological settings in south India. Environmental Conservation 31: 242253.CrossRefGoogle Scholar
Silva, R. A. D., Santos, A. M. M. & Tabarelli, M. (2003) Riqueza e diversidade de plantas lenhosas em cinco unidades de paisagem da Caatinga. In: Ecologia e conservação da Caatinga, eds. Leal, I. R., Tabarelli, M. & Silva, J. M. C., pp. 337366. Recife, Brazil: Editora Universitária – UFPE.Google Scholar
Singh, S. P. (1998) Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation 25: 12.CrossRefGoogle Scholar
Tabarelli, M., Peres, C. A. & Melo, F. P. L. (2012) The “few winners and many losers” paradigm revisited: emerging prospects for tropical forest biodiversity. Biological Conservation 155: 136140.CrossRefGoogle Scholar
Ter Braak, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 11671179.CrossRefGoogle Scholar
Uniyal, P., Pokhriyal, P., Dasgupta, S., Bhatt, D. & Todaria, N. P. (2010) Plant diversity in two forest types along the disturbance gradient in Dewalgarh Watershed, Garhwal Himalaya. Current Science 98: 938943.Google Scholar
Veldman, J. W., Mostacedo, B., Peña-Claros, M. & Putz, F. E. (2009) Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. Forest Ecology and Management 258: 16431649.CrossRefGoogle Scholar
Velloso, A. L., Sampaio, E. V. S. B. & Pareyn, F. G. C. (2002) Ecorregiões propostas para o bioma Caatinga. Recife, Brazil: APNE Associação Plantas do Nordeste; Instituto de Conservação Ambiental The Nature Conservancy do Brasil.Google Scholar
Supplementary material: Image

Oliveira supplementary material

Figure S1

Download Oliveira supplementary material(Image)
Image 173.4 KB
Supplementary material: Image

Oliveira supplementary material

Figure S2

Download Oliveira supplementary material(Image)
Image 153.9 KB
Supplementary material: File

Oliveira supplementary material

Figures S1 and S2 Caption

Download Oliveira supplementary material(File)
File 31.2 KB
Supplementary material: File

Oliveira supplementary material

Table S1

Download Oliveira supplementary material(File)
File 106 KB
Supplementary material: File

Oliveira supplementary material

Table S2

Download Oliveira supplementary material(File)
File 85.5 KB