Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T13:07:58.920Z Has data issue: false hasContentIssue false

Efficient Interfacial Design - A Multidisciplinary View

Published online by Cambridge University Press:  10 February 2011

C. F Shih
Affiliation:
Institute of Materials Research and Engineering, Singapore 119260
W. T. Chen
Affiliation:
Institute of Materials Research and Engineering, Singapore 119260
B. Cotterell
Affiliation:
Institute of Materials Research and Engineering, Singapore 119260
S. K. Lahiri
Affiliation:
Institute of Materials Research and Engineering, Singapore 119260
Y.W. Zhang
Affiliation:
Institute of Materials Research and Engineering, Singapore 119260
Get access

Abstract

One of the most important mechanical features in microelectronic packaging is the nterface. Recent developments in modelling interfacial fracture and the easurement of interfacial toughness relevant to microelectronic packaging are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, W. T., Quested, D., Reed, D., and Sammakia, B., in Proc. Symp. Application of Fracture Mechanics in Electronic Packaging, edited by Chen, W. T. and Read, D., ASME Int. Mech. Engng. Con. & Exhibition, Dallas, November (1997).Google Scholar
2. Dundars, J., J. Appl. Mech. 36, p. 650 (1969).Google Scholar
3. Hutchinson, J. W. and Suo, Z., Adv. Appl. Mech. 29, p. 63 (1992).Google Scholar
4. Rice, J. R., Appl. Mech. 55, p. 98 (1988).Google Scholar
5. Gurmnurthy, C. K., Norris, L. G., Hui, C-Y and Kramer, E. J., in Proc. Syp. Application of Fracture Mechanics in Electronic Packaging, edited by Chen, W. T. and Read, D., ASME Int. Mech. Engng. Con. & Exhibition, Dallas, November (1997).Google Scholar
6. Suga, T., Elssner, E. and Schmauder, S., J. Comp. Mater. 22, p. 917 (1988).Google Scholar
7. Rice, J. R, Suo, Z., Wang, J-S, in Metal-Ceramics Interfaces, edited by Rhühle, M., Evans, AA. G., Ashby, M. F., and Hirth, J. P. (Acta-Sripta Metall. Proc. Series Vol.4, Pergamon Press, 1990) p. 269294.Google Scholar
8. Irwin, G. R., in Structural Mechanics, Proc. 1st Symp. On Naval Struct. Mech. p. 577 (1960).Google Scholar
9. Suo, Z. and Shih, C. F. and Varias, A. G. Acta Metall. Mater. 41, p. 1551 (1993).Google Scholar
10. Beltz, G. E., Rice, J. R., Shih, C. F. and Xia, L., Acta Mater. 44, p. 3943 (1996).Google Scholar
11. Tvergaard, V. and Hutchinson, J. W., J. Mech. Phys. Solids 41, p. 1119 (1993).Google Scholar
12. Irwin, G. R., J. Appl. Mech. 24, p. 361 (1957)Google Scholar
13. Wei, Y., and Hutchinson, J. W., J. Mech. Phys. Solids 45, p 1137 (1996).Google Scholar
14. Zhang, Y. W., Private communication, (1998).Google Scholar
15. Charalambides, M., in Metal-Ceramics Interfaces, edited by Rhühle, M., Evans, AA.. G., Ashby, M. F., and Hirth, J. P. (Acta-Sripta Metall. Proc. Series Vol.4, Pergamon Press, 1990) p. 383400.Google Scholar
16. Charalambides, M., Kinlock, A. J., Wang, Y. and Williams, J. G., Int. J. Fract. 54, p. 269 (1992).Google Scholar
17. Cotterell, B., and Mai, Y. W., Fracture Mechanics of Cementitous Materials, Blackie A&P, 1996.Google Scholar
18. Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res. 9, p. 1734 (1994).Google Scholar
19. Bagchi, A., and Evans, A. G., Interface Sci. 3, p. 169 (1996).Google Scholar
20. Wu, T. Y., Tsukuda, Y., and Chen, W. T., in Proc. 46th Electronic Components Technology Conference, (1996).Google Scholar
21. Dory, M. D., and Hutchinson, J. W., Proc. Roy. Soc. Lond. A 452, p. 2319 (1996).Google Scholar
22. Boer, M. P. De, and Gerberich, W. W., Acta Mater. 44, p. 3169 (1996).Google Scholar