Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T04:46:13.268Z Has data issue: false hasContentIssue false

Ionic Size Limits for A Ions in Brannerite (ATi2O6) and Pyrochlore (CaATi2O7) Titanate Structures ( A = tetravalent rare earths and actinides)

Published online by Cambridge University Press:  21 March 2011

E. R. Vance
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation Menai, NSW 2234, Australia
M. L. Carter
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation Menai, NSW 2234, Australia
M. W. A. Stewart
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation Menai, NSW 2234, Australia
R. A. Day
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation Menai, NSW 2234, Australia
B. D. Begg
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation Menai, NSW 2234, Australia
C. J. Ball
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation Menai, NSW 2234, Australia
Get access

Abstract

The lower limit of the size of the octahedral A4+ ion in the ATi2O6 brannerite structure is just smaller than that of Ce/Pu. Attempts to expand the A ion size beyond that of Th by (a) substituting a Ba ion plus two U5+ ions for three A ions or (b) substituting one Ba plus one hexavalent ion for two A ions did not succeed. Ge, Sn and Zr substitutions in the Ti site of ThTi2O6 do not exceed 0.2 formula unit in ceramic preparations. These and other coupled substitutions in the B site of ThTi2O6 showed that the average B site size could tolerate deviations of < 1%. Ce4+ is unusually stabilised in air atmospheres at temperatures close to the melting point of 1400°C in the A site of brannerite. Lattice parameter data on different endmember ATi2O6 brannerites are given. The lower and upper size limits for the eightfold A ions in the pyrochlore structure are around 0.100 and 0.117 nm respectively. A BaUTi2O7 stoichiometry did not produce a pyrochlore structure, and when fired in either argon or air yielded a mixture of BaUTiO6, whose structure is still uncertain, plus brannerite and rutile.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ebbinghaus, B. B., VanKonynenburg, R. A., Ryerson, F. J., Vance, E. R., Stewart, M. W. A., Jostsons, A., Allender, J. S., Rankin, T. and Congdon, J., “Ceramic formulation for the Immobilization of Plutonium”, Waste Management 98 (CD-ROM; sess65/65-04)Google Scholar
2. Vance, E. R., Stewart, M. W. A., Day, R. A., Hart, K. P., Hambley, M. J. and Brownscombe, A., Australian Nuclear Science and Technology Organisation Report R97m030 (1997).Google Scholar
3. Szymanski, J. T. and Scott, J. D., Can. Mineral., 20, 271–79 (1982).Google Scholar
4. Zhang, Y., Hart, K.P., Bourcier, W. L., Day, R. A., Colella, M., Thomas, B., Aly, Z. and Jostsons, A., J. Nucl. Mater., 289, 254 (2001).Google Scholar
5. Vance, E. R., Watson, J. N., Carter, M. L., Day, R. A., Lumpkin, G. R., Hart, K. P., Zhang, Y., McGlinn, P. J., Stewart, M. W. A. and Cassidy, D. J., “Crystal Chemistry, Radiation Effects and Aqueous Leaching of Brannerite, UTi2O6”, Environmental Issues and Waste Management Technologies V, ed. Chandler, G. and Feng, X. (American Ceramic Society, Westerville, OH, USA, 2000). pp. 561–8Google Scholar
6. Pabst, A., Amer. Mineral., 39, 109–17 (1954).Google Scholar
7. Vance, E. R., Watson, J. N., Carter, M. L., Day, R. A. and Begg, B. D., J. Amer. Ceram. Soc., 84, 141–4 (2001).Google Scholar
8. Stewart, M. W. A., Vance, E. R., Jostsons, A., Walls, P. A., Hart, K. P., Moricca, S., Day, R. A., Lumpkin, G. R., Ball, C. J. and Perera, D. S., Australian Nuclear Science and Technology Organisation Report R00m031 (2000).Google Scholar
9. Shannon, R. D., Acta Cryst., A32, 751–67 (1976).Google Scholar
10. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M. and Ramm, E. J., “Synroc”, Radioactive Waste forms for the Future, ed. Lutze, W. and Ewing, R. C. (Elsevier, 1988) pp. 233334 Google Scholar
11. Vance, E. R., Day, R.A., Zhang, Z., Begg, B. D., Ball, C. J. and Blackford, M. G., J. Solid State Chem., 124, 7782 (1996).Google Scholar
12. Lumpkin, G. R., Leung, S. H. F. and Colella, M., “Composition, Geochemical Alteration, and Alpha-Decay Damage Effects of Natural Brannerite”, Scientific Basis for Nuclear Waste Management XXIII, ed. Smith, R. W. and Shoesmith, D. W. (Materials Research Society, Pittsburgh, PA, 2000), pp. 359–65.Google Scholar
13. Begg, B. D., Vance, E. R. and Lumpkin, G. R., “Charge Compensation and the Incorporation of Cerium in Zirconolite and Perovskite”, Scientific Basis for Nuclear Waste Management XXI, ed. McKinley, I. G. and McCombie, C. (Materials Research Society, Pittsburgh, PA, 1998) pp. 7986.Google Scholar
14. Pepin, J.G., Vance, E.R. and McCarthy, G.J., J. Solid State Chem., 38, 360–7 (1981).Google Scholar
15. McCauley, R. A. and Hummel, F. A., J. Solid State Chem., 33, 99105 (1980).Google Scholar
16. Stefanovsky, S. V., Yudintsev, S. V., Nikonov, B. S., Lapina, M. I. and Aloy, A. S., “Effect of Synthesis condition on Phase Composition of Pyrochlore-Brannerite Ceramics”, presented at Symposium on Scientific Basis for Nuclear Waste Management XXIV, Sydney, Australia, August 2000, Materials Research Society Google Scholar