Hostname: page-component-6b989bf9dc-md2j5 Total loading time: 0 Render date: 2024-04-15T05:04:24.348Z Has data issue: false hasContentIssue false

Nanogold as a Specific Marker for Electron Cryotomography

Published online by Cambridge University Press:  22 May 2009

Yongning He
Affiliation:
Division of Biology, California Institute of Technology, 114-96, 1200 East California Blvd., Pasadena, CA 91125
Grant J. Jensen
Affiliation:
Division of Biology, California Institute of Technology, 114-96, 1200 East California Blvd., Pasadena, CA 91125 Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125
Pamela J. Bjorkman*
Affiliation:
Division of Biology, California Institute of Technology, 114-96, 1200 East California Blvd., Pasadena, CA 91125 Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125
*
Corresponding author. E-mail: bjorkman@caltech.edu
Get access

Abstract

While electron cryotomography (ECT) provides “molecular” resolution, three-dimensional images of unique biological specimens, sample crowdedness, and/or resolution limitations can make it difficult to identify specific macromolecular components. Here we used a 1.4 nm Nanogold® cluster specifically attached to the Fc fragment of IgG to monitor its interaction with the neonatal Fc receptor (FcRn), a membrane-bound receptor that transports IgG across cells in acidic intracellular vesicles. ECT was used to image complexes formed by Nanogold-labeled Fc bound to FcRn attached to the outer surface of synthetic liposomes. In the resulting three-dimensional reconstructions, 1.4 nm Nanogold particles were distributed predominantly along the interfaces where 2:1 FcRn-Fc complexes bridged adjacent lipid bilayers. These results demonstrate that the 1.4 nm Nanogold cluster is visible in tomograms of typically thick samples (∼250 nm) recorded with defocuses appropriate for large macromolecules and is thus an effective marker.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerson, C.J., Jadzinsky, P.D., Jensen, G.J. & Kornberg, R.D. (2006). Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J Am Chem Soc 128, 26352640.CrossRefGoogle ScholarPubMed
Boisset, N., Grassucci, R., Penczek, P., Delain, E., Pochon, F., Frank, J. & Lamy, J.N. (1992). Three-dimensional reconstruction of a complex of human alpha 2-macroglobulin with monomaleimido Nanogold (Au1.4nm) embedded in ice. J Struct Biol 109, 3945.CrossRefGoogle ScholarPubMed
Burmeister, W.P., Gastinel, L.N., Simister, N.E., Blum, M.L. & Bjorkman, P.J. (1994a). Crystal structure at 2.2 Å resolution of the MHC-related neonatal Fc receptor. Nature 372, 336343.Google Scholar
Burmeister, W.P., Huber, A.H. & Bjorkman, P.J. (1994b). Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379383.CrossRefGoogle ScholarPubMed
Celia, H., Wilson-Kubalek, E., Milligan, R.A. & Teyton, L. (1999). Structure and function of a membrane-bound murine MHC class I molecule. Proc Natl Acad Sci USA 96, 56345639.CrossRefGoogle ScholarPubMed
Gan, L., Chen, S. & Jensen, G.J. (2008). Molecular organization of gram-negative peptidoglycan. Proc Natl Acad Sci USA 105, 1895318957.CrossRefGoogle ScholarPubMed
Hainfeld, J.F. & Furuya, F.R. (1992). A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J Histochem Cytochem 40, 177184.CrossRefGoogle ScholarPubMed
Hainfeld, J.F. & Powell, R.D. (2000). New frontiers in gold labeling. J Histochem Cytochem 48, 471480.Google Scholar
He, W., Kivork, C.K., Machinani, S., Morphew, M.K., Gail, A.M., Tesar, D.B., Tiangco, N.E., McIntosh, J.R. & Bjorkman, P.J. (2007). A freeze substitution fixation-based gold enlarging technique for EM studies of endocytosed nanogold-labeled molecules. J Struct Biol 160, 103111.CrossRefGoogle ScholarPubMed
He, W., Ladinsky, M.S., Huey-Tubman, K.E., Jensen, G.J., McIntosh, J.R. & Bjorkman, P.J. (2008). FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455, 542546.Google Scholar
Henderson, G.P., Gan, L. & Jensen, G.J. (2007). 3-D ultrastructure of O. tauri: Electron cryotomography of an entire eukaryotic cell. PLoS ONE 2, e749.Google Scholar
Huber, A.H., Kelley, R.F., Gastinel, L.N. & Bjorkman, P.J. (1993). Crystallization and stoichiometry of binding of a complex between a rat intestinal Fc receptor and Fc. J Mol Biol 230, 10771083.Google Scholar
Jeon, H. & Shipley, G.G. (2000). Localization of the N-terminal domain of the low density lipoprotein receptor. J Biol Chem 275, 3046530470.CrossRefGoogle ScholarPubMed
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional data using IMOD. J Struct Biol 116, 7176.Google Scholar
Lucic, V., Forster, F. & Baumeister, W. (2005). Structural studies by electron tomography: From cells to molecules. Annu Rev Biochem 74, 833865.Google Scholar
Martin, F.J. & Papahadjopoulos, D. (1982). Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem 257, 286288.CrossRefGoogle ScholarPubMed
Martin, W.L. & Bjorkman, P.J. (1999). Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochem 38, 1263912647.Google Scholar
Martin, W.L., West, A.P., Gan, L. & Bjorkman, P.J. (2001). Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: Mechanism of pH dependent binding. Mol Cell 7, 867877.CrossRefGoogle ScholarPubMed
Montesano-Roditis, L., Glitz, D.G., Traut, R.R. & Stewart, P.L. (2001). Cryo-electron microscopic localization of protein L7/L12 within the Escherichia coli 70 S ribosome by difference mapping and Nanogold labeling. J Biol Chem 276, 1411714123.CrossRefGoogle ScholarPubMed
Morphew, M., He, W., Bjorkman, P.J. & McIntosh, J.R. (2008). Silver enhancement of nanogold particles during freeze substitution fixation for electron microscopy. J Microsc 230, 263267.Google Scholar
Murphy, G.E. & Jensen, G.J. (2005). Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. Structure 13, 17651773.Google Scholar
Raghavan, M., Wang, Y. & Bjorkman, P.J. (1995). Effects of receptor dimerization on the interaction between the class I MHC related Fc receptor and immunoglobulin G. Proc Natl Acad Sci USA 92, 1120011204.Google Scholar
Roopenian, D.C. & Akilesh, S. (2007). FcRn: The neonatal Fc receptor comes of age. Nat Rev Immunol 7, 715725.Google Scholar
Safer, D., Bolinger, L. & Leigh, J.S. Jr. (1986). Undecagold clusters for site-specific labeling of biological macromolecules: Simplified preparation and model applications. J Inorg Biochem 26, 7791.CrossRefGoogle ScholarPubMed
Weipoltshammer, K., Schofer, C., Almeder, M. & Wachtler, F. (2000). Signal enhancement at the electron microscopic level using Nanogold and gold-based autometallography. Histochem Cell Biol 114, 489495.Google Scholar
Zheng, S.Q., Keszthelyi, B., Branlund, E., Lyle, J.M., Braunfeld, M.B., Sedat, J.W. & Agard, D.A. (2007). UCSF tomography: An integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J Struct Biol 157, 138147.Google Scholar

He Supplementary Movie

Movie

Download He Supplementary Movie(Video)
Video 7.3 MB