Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T04:27:38.983Z Has data issue: false hasContentIssue false

Substrate Misorientation Effects on Epitaxial GaInAsSb

Published online by Cambridge University Press:  10 February 2011

C. A. Wang
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173-9108
H. K. Choi
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173-9108
D. C. Oakley
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173-9108
G. W. Charache
Affiliation:
Lockheed Martin Corporation, Schenectady, NY 12301
Get access

Abstract

The effect of substrate misorientation on the growth of GaInAsSb was studied for epilayers grown lattice matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy. The substrates were (100) misoriented 2 or 6° toward (110), (111)A, or (111)B. The surface is mirror-like and featureless for layers grown with a 6° toward (111)B misorientation, while a slight texture was observed for layers grown on all other misorientations. The optical quality of layers, as determined by the full width at half-maximum of photoluminescence spectra measured at 4K, is significantly better for layers grown on substrates with a 6° toward (111)B misorientation. The incorporation of Zn as a p-type dopant in GaInAsSb is about 1.5 times more efficient on substrates with 60 toward (111)B misorientation compared to 2° toward (110) misorientation. The external quantum efficiency of thermophotovoltaic devices is not, however, significantly affected by substrate misorientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Onabe, K., Jpn. J. Appl. Phys. 21, 964 (1982).Google Scholar
2. Stringfellow, G.B., J. Cryst. Growth 58, 194 (1982).Google Scholar
3. Tournie, E., Pitard, F., and Joullie, A., J. Cryst. Growth 104, 683 (1990).Google Scholar
4. Chemg, M.J., Jen, H.R., Larsen, C.A., Stringfellow, G.B., Lundt, H., and Taylor, P.C., J. Cryst. Growth 77, 408 (1986).Google Scholar
5. Choi, H.K., Eglash, S.J., and Turner, G.W., Appl. Phys. Lett. 64, 2474 (1994).Google Scholar
6. Garbuzov, D.Z., Martinelli, R.U., Lee, H., York, P.K., Menna, R.J., Connolly, J.C. and Narayan, S.Y., Appl. Phys. Lett. 69, 2006 (1996).Google Scholar
7. Choi, H.K., Turner, G.W., Connors, M.K., Fox, S., Dauga, C., and Dagenais, M., IEEE Photon. Technol. Lett. 7, 281 (1995).Google Scholar
8. Shi, Y., Zhao, J.H., Lee, H., Sarathy, J., Cohen, M., and Olsen, G., Electron. Lett. 32, 2268 (1996).Google Scholar
9. Uppal, P.N., Charache, G., Baldasaro, P., Campbell, B., Loughin, S., Svensson, S., and Gill, D., J. Cryst. Growth 175/176, 877 (1997).Google Scholar
10. Wang, C.A., Choi, H.K., Turner, G.W., Spears, D.L., Manfra, M.J., and Charache, G.W., in 3rd NREL Conference on the Thermophotovoltaic Generation of Electricity, edited by Benner, J.P., Allman, C.S., and Coutts, T.J. (AIP Conference Proceedings 401, Woodbury, NY, 1997) pp. 7587.Google Scholar
11. Mizuta, M., Kawata, S., Iwamoto, T., and Hiroshi, H., Jpn. J. Appl. Phys. 5, L283 (1984).Google Scholar
12. Tsui, R.K., Kramer, G.D., Curless, J.A., and Peffley, M.S., Appl. Phys. Lett. 48, 940 (1986).Google Scholar
13. Chen, H.Z., Ghaffari, A., Morkoc, H., and Yariv, A., Appl. Phys. Lett. 51, 2094 (1987).Google Scholar
14. Wang, C.A. and Choi, H.K., J. Electron. Mater. 26, 1231 (1997).Google Scholar
15. Nijenhuis, J. te, Hageman, P.R., and Giling, L.J., J. Cryst. Growth 167, 397 (1996).Google Scholar
16. Sopanen, M., Koljonen, T., Lipsanen, H., and Tuomi, T., J. Cryst. Growth 145, 492 (1994).Google Scholar
17. Shin, J., Hsu, T.C., Hsu, Y., and Stringfellow, G.B., J. Cryst. Growth 179, 1 (1997).Google Scholar
18. Wang, C.A., Turner, G.W., Manfra, M.J., Choi, H.K., and Spears, D.L., in Infrared Applications of Semiconductors - Materials, Processing and Devices, edited by Manasreh, M.O., Myers, T.H., and Julien, F.H. (Mater. Res. Soc. Symp. Proc. 450, Pittsburgh, PA, 1997) pp. 5560.Google Scholar
19. Tournie, E., Lazzari, J.-L., Pitard, F., Alibert, C., Joullie, A., and Lambert, B., J. Appl. Phys. 68, 5936 (1990).Google Scholar