Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T22:41:28.329Z Has data issue: false hasContentIssue false

(Dis)continuity of Lyapunov exponents

Published online by Cambridge University Press:  10 August 2018

MARCELO VIANA*
Affiliation:
IMPA, Est. D. Castorina 110, 22460-320 Rio de Janeiro, Brazil email viana@impa.br

Abstract

A survey of recent results on the dependence of Lyapunov exponents on the underlying data.

Type
Survey Article
Copyright
© Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, A., Eskin, A. and Viana, M.. Continuity of Lyapunov exponents for products of random matrices. In preparation.Google Scholar
Avila, A., Santamaria, J. and Viana, M.. Holonomy invariance: rough regularity and applications to Lyapunov exponents. Astérisque 358 (2013), 1374.Google Scholar
Avila, A. and Viana, M.. Simplicity of Lyapunov spectra: a sufficient criterion. Port. Math. 64 (2007), 311376.Google Scholar
Avila, A. and Viana, M.. Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture. Acta Math. 198 (2007), 156.Google Scholar
Avila, A. and Viana, M.. Extremal Lyapunov exponents: an invariance principle and applications. Invent. Math. 181(1) (2010), 115189.Google Scholar
Avila, A., Viana, M. and Wilkinson, A.. Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows. J. Eur. Math. Soc. (JEMS) 17 (2015), 14351462.Google Scholar
Backes, L.. Rigidity of fiber bunched cocycles. Bull. Braz. Math. Soc. (N.S.) 46 (2015), 163179.Google Scholar
Backes, L., Brown, A. and Butler, C.. Continuity of Lyapunov exponents for cocycles with invariant holonomies. Preprint, 2015, arXiv:1507.08978.Google Scholar
Backes, L., Poletti, M. and Sánchez, A.. The set of fiber-bunched cocycles with nonvanishing Lyapunov exponents over a partially hyperbolic map is open. Math. Res. Lett. to appear.Google Scholar
Barreira, L. and Pesin, Ya.. Lyapunov Exponents and Smooth Ergodic Theory (University Lecture Series, 23) . American Mathematical Society, Providence, RI, 2002.Google Scholar
Bochi, J.. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam. Sys. 22 (2002), 16671696.Google Scholar
Bochi, J.. C 1 -generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents. J. Inst. Math. Jussieu 8 (2009), 4993.Google Scholar
Bochi, J. and Viana, M.. The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. of Math. (2) 161 (2005), 14231485.Google Scholar
Bocker, C. and Viana, M.. Continuity of Lyapunov exponents for random two-dimensional matrices. Ergod. Th. & Dynam. Sys. 37 (2017), 14131442.Google Scholar
Bonatti, C., Gómez-Mont, X. and Viana, M.. Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 579624.Google Scholar
Bonatti, C. and Viana, M.. Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod. Th. & Dynam. Sys. 24 (2004), 12951330.Google Scholar
Bourgain, J.. Positivity and continuity of the Lyapunov exponent for shifts on 𝕋 d with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96 (2005), 313355.Google Scholar
Bourgain, J. and Jitomirskaya, S.. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108 (2002), 12031218.Google Scholar
Butler, C.. Discontinuity of Lyapunov exponents near fiber bunched cocycles. Ergod. Th. & Dynam. Sys. 38 (2018), 523539.Google Scholar
Cambrainha, M. and Matheus, C.. Typical symplectic locally constant cocycles over certain shifts of countable type have simple Lyapunov spectra. Port. Math. 73 (2016), 171176.Google Scholar
Damanik, D.. Schrödinger operators with dynamically defined potentials. Ergod. Th. & Dynam. Sys. 37 (2017), 16811764.Google Scholar
Duarte, P. and Klein, S.. Large deviations for products of random two dimensional matrices. Preprint, 2018.Google Scholar
Duarte, P. and Klein, S.. Large deviation type estimates for iterates of linear cocycles. Stoch. Dyn. 16 (2016), 1660010, 54.Google Scholar
Duarte, P. and Klein, S.. Lyapunov Exponents of Linear Cocycles: Continuity via Large Deviations (Atlantis Studies in Dynamical Systems, 3) . Atlantis Press, Paris, 2016.Google Scholar
Duarte, P., Klein, S. and Santos, M.. A random cocycle with non Hölder Lyapunov exponent. Preprint, 2017.Google Scholar
Furstenberg, H.. Non-commuting random products. Trans. Amer. Math. Soc. 108 (1963), 377428.Google Scholar
Furstenberg, H. and Kesten, H.. Products of random matrices. Ann. Math. Statist. 31 (1960), 457469.Google Scholar
Furstenberg, H. and Kifer, Yu.. Random matrix products and measures in projective spaces. Israel J. Math. 10 (1983), 1232.Google Scholar
Gol’dsheid, I. Ya. and Margulis, G. A.. Lyapunov indices of a product of random matrices. Uspekhi Mat. Nauk 44 (1989), 1360.Google Scholar
Goldstein, M. and Schlag, W.. Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. of Math. (2) 154 (2001), 155203.Google Scholar
Guivarc’h, Y. and Raugi, A.. Fontière de Furstenberg, proprietés de contraction et theorèmes de convergence. Z. Wahrsch. Verw. Gebiete 69 (1985), 187242.Google Scholar
Guivarc’h, Y. and Raugi, A.. Products of random matrices: convergence theorems. Contemp. Math. 50 (1986), 3154.Google Scholar
Hennion, H.. Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes. Z. Wahrsch. Verw. Gebiete 67 (1984), 265278.Google Scholar
Rodriguez Hertz, F., Rodriguez Hertz, M. A., Tahzibi, A. and Ures, R.. Maximizing measures for partially hyperbolic systems with compact center leaves. Ergod. Th. & Dynam. Sys. 32 (2012), 825839.Google Scholar
Hirsch, M., Pugh, C. and Shub, M.. Invariant Manifolds (Lecture Notes in Mathematics, 583) . Springer, Berlin, 1977.Google Scholar
Kingman, J.. The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. A 30 (1968), 499510.Google Scholar
Knill, O.. The upper Lyapunov exponent of SL(2, R) cocycles: discontinuity and the problem of positivity. Lyapunov Exponents (Oberwolfach, 1990) (Lecture Notes in Mathematics, 1486) . Springer, Berlin, 1991, pp. 8697.Google Scholar
Knill, O.. Positive Lyapunov exponents for a dense set of bounded measurable SL (2, R)-cocycles. Ergod. Th. & Dynam. Sys. 12 (1992), 319331.Google Scholar
Kuratowski, K.. Topology. Vol. I. Academic Press, New York–London, 1966, New edition, revised and augmented. Translated from the French by J. Jaworowski.Google Scholar
Ledrappier, F.. Positivity of the exponent for stationary sequences of matrices. Lyapunov Exponents (Bremen, 1984) (Lecture Notes Mathematics, 1186) . Springer, Berlin, 1986, pp. 5673.Google Scholar
Lewowicz, J.. Expansive homeomorphisms of surfaces. Bol. Soc. Bras. Mat. 20 (1989), 113133.Google Scholar
Liang, C., Marin, K. and Yang, J.. Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle. Preprint, 2016, arXiv:1604.05987.Google Scholar
Lyapunov, A. M.. The General Problem of the Stability of Motion. Taylor & Francis, London, 1992, Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian original and edited by A. T. Fuller. With an introduction and preface by Fuller, a biography of Lyapunov by V. I. Smirnov, and a bibliography of Lyapunov’s works compiled by J. F. Barrett. Lyapunov centenary issue. Reprint of Internat. J. Control 5 5 (1992), no. 3. With a foreword by Ian Stewart.Google Scholar
Malheiro, E. and Viana, M.. Lyapunov exponents of linear cocycles over Markov shifts. Stoch. Dyn. 15 (2015), 1550020, 27.Google Scholar
Mañé, R.. Oseledec’s Theorem from the Generic Viewpoint (Proceedings International Congress of Mathematicians, 1 and 2 (Warsaw, 1983)) . Polish Scientific Publishers PWN, Warsaw, 1984, pp. 12691276.Google Scholar
Marín, K.. C r -density of (non-uniform) hyperbolicity in partially hyperbolic symplectic diffeomorphisms. Comment. Math. Helv. 91 (2016), 357396.Google Scholar
Oseledets, V. I.. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197231.Google Scholar
Le Page, É.. Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications. Ann. Inst. Henri Poincaré Probab. Stat. 25 (1989), 109142.Google Scholar
Peres, Y.. Analytic dependence of Lyapunov exponents on transition probabilities. Lyapunov Exponents (Oberwolfach, 1990) (Lecture Notes in Mathematics, 1486) . Springer, Berlin, 1991, pp. 6480.Google Scholar
Polletti, M. and Viana, M.. Simple Lyapunov spectrum for certain linear cocycles over partially hyperbolic maps. Preprint, 2016, IMPA.Google Scholar
Raghunathan, M. S.. A proof of Oseledec’s multiplicative ergodic theorem. Israel J. Math. 32 (1979), 356362.Google Scholar
Ruelle, D.. Analyticity properties of the characteristic exponents of random matrix products. Adv. Math. 32 (1979), 6880.Google Scholar
Ruelle, D.. Characteristic exponents and invariant manifolds in Hilbert space. Ann. of Math. (2) 115 (1982), 243290.Google Scholar
Saghin, R. and Yang, J.. Rigidity of lyapunov exponents of linear Anosov diffeomorphisms. In preparation.Google Scholar
Sánchez, A.. Lyapunov exponents of probability distributions with non-compact support. Preprint, 2018, IMPA.Google Scholar
Tahzibi, A. and Yang, J.. Invariance principle and rigidity of high entropy measures. Trans. Amer. Math. Soc. to appear.Google Scholar
Tall, E. Y. and Viana, M.. Moduli of continuity of Lyapunov exponents for random $\operatorname{GL}(2)$ -cocycles. Preprint, 2018, IMPA.Google Scholar
Ures, R., Viana, M. and Yang, J.. Maximal measures of diffeomorphisms on circle fiber bundles. In preparation.Google Scholar
Viana, M.. Multidimensional nonhyperbolic attractors. Publ. Math. Inst. Hautes Études Sci. 85 (1997), 6396.Google Scholar
Viana, M.. Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. of Math. (2) 167 (2008), 643680.Google Scholar
Viana, M.. Lectures on Lyapunov Exponents (Cambridge Studies in Advanced Mathematics, 145) . Cambridge University Press, Cambridge, 2014.Google Scholar
Viana, M. and Oliveira, K.. Foundations of Ergodic Theory. Cambridge University Press, Cambridge, 2015.Google Scholar
Viana, M. and Yang, J.. Continuity of Lyapunov exponents in the $C^{0}$ topology. Israel J. Math. to appear.Google Scholar
Viana, M. and Yang, J.. Physical measures and absolute continuity for one-dimensional center direction. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 (2013), 845877.Google Scholar
Villani, C.. Optimal Transport, Old and New (Grundlehren der Mathematischen Wissenschaften, 338) . Springer, Berlin, 2009.Google Scholar
Walters, P.. A dynamical proof of the multiplicative ergodic theorem. Trans. Amer. Math. Soc. 335 (1993), 245257.Google Scholar