Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T22:55:17.281Z Has data issue: false hasContentIssue false

Infrared behavior of aluminum nanostructure sculptured thin films

Published online by Cambridge University Press:  01 February 2011

Tino Hofmann
Affiliation:
thofmann@engr.unl.edu, University of Nebraska-Lincoln, Electrical Engineering, 209N WSEC, Lincoln, NE, 68588, United States
M. Schubert
Affiliation:
schubert@engr.unl.edu, University of Nebraska-Lincoln, Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, Lincoln, NE, 68588, United States
D. Schmidt
Affiliation:
schmidt@bigred.unl.edu, University of Nebraska-Lincoln, Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, Lincoln, NE, 68588, United States
E. Schubert
Affiliation:
evaschub@engr.unl.edu, University of Nebraska-Lincoln, Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, Lincoln, NE, 68588, United States
Get access

Abstract

We report on fabrication, structural and infrared optical characterization of nanostructure aluminum sculptured thin films prepared by glancing angle deposition (GLAD) and controlled substrate motion on p-type silicon. We discuss two structures, one with plate-like and one with screw-like (chiral) morphology. While the plate-like sample possesses a metal Drude behavior in the infrared spectral range, the chiral nanowire sample behaves non-metallic and reveals a series of intriguing resonances, which are equally spaced in frequency by ∼7.5 THz. We suggest that formation of 3D nano resonator circuits consisting of inductances and capacitances has occurred within the screw-like conductive aluminum wire sample, which might be responsible for the observed resonances. We suggest conductive GLAD nanostructures in combination with Schottky diodes to facilitate active or passive THz detector and transmitter devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lakthakia, A. and Messier, R., Sculptured Thin Films (SPIE Press, Bellingham, 2004).Google Scholar
[2] Schubert, E., Fahlteich, J., Th. Höche, Wagner, G., and Rauschenbach, B., Nucl. Instrum. Meth. B 244, 40 (2006).Google Scholar
[3] Robbie, K., Brett, M. J., and Lakhtakia, A., J. Vac. Sci. Technol. A 13, 2991 (1995).Google Scholar
[4] Schubert, E.. Höche, Th., Frost, F., and Rauschenbach, B., Appl. Phys. A 81, 481 (2005).Google Scholar
[5] Karabacak, T., Wang, G.-C., and Lu, T.-M., J. Appl. Phys. 94, 7723 (2003).Google Scholar
[6] Smy, T., Dew, S. K., and Joshi, R. V., J. Vac. Sci. Technol. A 19, 251 (2001).Google Scholar
[7] Karabacak, T., Singh, J. P., Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., Phys. Rev. B 68, 125408 (2003).Google Scholar
[8] Toader, O. and John, S., Phys. Rev. E 66, 016610 (2002).Google Scholar
[9] Singh, J. P., Liu, D. L., Ye, D. X., Picu, R. C., Lu, T. M., and Wang, G. C., Appl. Phys. Lett. 84, 3657 (2004).Google Scholar
[10] Umlor, M. T., Appl. Phys. Lett. 87, 082505 (2005).Google Scholar
[11] Bell, D. J., Dong, J., Sun, Y., Zhang, L., Nelson, B. J., and Grützmacher, D., Proc. IEEE Conference of Nanotechnology, Nagoya, Japan (2005).Google Scholar
[12] Kesapragada, S. V., Victor, P., Nalamasu, O., and Gall, D., Nano Lett. 6, 854 (2006).Google Scholar
[13] Harris, K. D., Huzingia, A., and Brett, M.J., Electrochem. Solid State Lett. 8, A525 (2005).Google Scholar
[14] Ye, D.-X., Zhou, Y.-P., Yang, G.-R., Zhao, Y.-G., Wang, G.-C., and Lu, T.-M., Nanotechnology 13, 615 (2002).Google Scholar
[15] Dick, B., Brett, M.J., and Smy, T., J. Vac. Sci.Techn. B 21, 2560 (2003).Google Scholar
[16] Suzuki, M., Nagai, K., Kinoshita, S., Kimura, K., Okano, T., and Sasakawa, K., Appl. Phys. Lett. 89, 133101 (2006).Google Scholar
[17] Chen, H. T., Padilla, W. J., Zide, J. M. O., Gossard, A. C., Taylor, A. J., and Averitt, R. D., Nature 444, 597 (2006).Google Scholar
[18] Mittleman, D., Nature 444, 560 (2006).Google Scholar
[19] Franke, E., Trimble, C. L., DeVries, M. J., Woollam, J.A., Schubert, M., and Frost, F., J. Appl. Phys. 88, 5166 (2000).Google Scholar
[20] Gelmont, B.L., Woolard, D.L., Crowe, T.W., Mattauch, R.J., Phys. Rev. B 61, 15939 (2000).Google Scholar