Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T07:14:02.169Z Has data issue: false hasContentIssue false

Kilbuchophyllid corals from the Ordovician (Caradoc) of Pomeroy, Co. Tyrone: implications for coral phylogeny and for movement on the Southern Uplands Fault

Published online by Cambridge University Press:  03 November 2011

Colin T. Scrutton
Affiliation:
Department of Geological Sciences, University of Durham, South Road, Durham, DH1 3LE
Andrew J. Jeram
Affiliation:
Department of Geology, Ulster Museum, Botanic Gardens, Belfast, BT9 5AB
Howard A. Armstrong
Affiliation:
Department of Geological Sciences, University of Durham, South Road, Durham, DH1 3LE

Abstract

An excavation in the mid-Ordovician (Caradoc) Bardahessiagh Formation at Pomeroy, Co. Tyrone, Northern Ireland in 1992 has yielded a rich fauna of invertebrates, including several specimens of the scleractiniamorph coral Kilbuchophyllia. The material is assigned to the species K. clarksoni, previously described from penecontemporaneous levels in the Kirkcolm Formation of the Northern Belt of the Southern Uplands. The diagnosis of K. clarksoni is extended to include specimens of significantly greater size than the Southern Uplands material. All the material is mouldic but includes composite moulds, which in comparison with the preservation of other faunal elements, strongly suggests an original aragonitic composition for the kilbuchophyllid skeleton. Furthermore, details of insertion of higher cycles of septa visible on one particularly well preserved specimen confirm the process of septal substitution in these corals. Septal substitution is otherwise unique to post-Palaeozoic scleractinian corals and indicates the presence of paired mesenteries in the kilbuchophyllid polyp. The significance of this for the evolution of these corals and related anemones is discussed. The discovery of kilbuchophyllid corals at Pomeroy supports the view that post-Caradoc sinistral strike-slip movement on the Southern Uplands Fault was unlikely to have exceeded 200 km.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, H. A., Owen, A. W., Scrutton, C. T., Clarkson, E. N. K. & Taylor, C. M. 1996. Evolution of the Northern Belt, Southern Uplands—implications for the Southern Uplands controversy. Journal of the Geological Society of London, 153, 197205.CrossRefGoogle Scholar
Bluck, B. J. 1985. The Scottish paratectonic Caledonides. Scottish Journal of Geology, 21, 437–64.CrossRefGoogle Scholar
Bluck, B. J., Gibbons, W. & Ingham, J. K. 1992. Terranes. In Cope, J. C. W., Ingham, J. K. & Rawson, P. R. (eds) Atlas of palaeogeography and lithofacies, 14, Geological Society of London.Google Scholar
Bluck, B. J. & Ingham, J. K. 1992. The Girvan-Ballantrae Complex. In Lawson, J. D. & Weedon, D. S. (eds) Geological excursions around Glasgow and Girvan, 301–8, Geological Society of Glasgow.Google Scholar
Chen, C. A., Odorico, D. M., ten Lohuis, M., Veron, J. E. N. & Miller, D. J. 1995. Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5'-end of the 28S rDNA. Molecular Phylogenetics & Evolution, 4, 175–83.CrossRefGoogle Scholar
Clarkson, E. N. K., Harper, D. A. T., Owen, A. W. & Taylor, C. M. 1992. Ordovician faunas in mass-flow deposits, Southern Scotland. Terra Nova, 4, 245–53.CrossRefGoogle Scholar
Cocks, L. R. M. & Fortey, R. A. 1982. Faunal evidence for oceanic separations in the Palaeozoic of Britain. Journal of the Geological Society of London, 139, 467–80.CrossRefGoogle Scholar
Elders, C. F. 1987. The provenance of granite boulders in conglomerates of the Northern and Central Belts of the Southern Uplands of Scotland. Journal of the Geological Society of London, 144, 853–63.CrossRefGoogle Scholar
Elders, C. F. 1990. Discussion on detrital mineral ages from the Southern Uplands of Scotland using Ar-Ar laser probe. Journal of the Geological Society of London, 147, 882–4.Google Scholar
Evans, D. H. 1994. The cephalopod fauna of the Bardahessiagh Formation (Caradoc Series) of Pomeroy, County Tyrone. Irish Journal of Earth Science, 13, 1129.Google Scholar
Ezaki, Y. 1997. The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology, 40, 114.Google Scholar
Fautin, D. G. & Lowenstein, J. M. 1992. Phylogenetic relationships among scleractinians, actinians and corallimorpharians (Coelenterata: Anthozoa). Proceedings of the Seventh International Coral Reef Symposium, 2, 665–70. Guam.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W. & Rushton, A. W. A. 1995. A revision of Ordovician series and stages from the historical type area. Geological Magazine, 132, 1530.CrossRefGoogle Scholar
Hand, C. 1966. On the evolution of the Actiniaria. In Rees, W. J. (ed.) The Cnidaria and their evolution, 135146. London: Symposia of the Zoological Society of London, no. 16.Google Scholar
Hutton, D. H. W. 1987. Strike-slip terranes and a model for the evolution of the British and Irish Caledonides. Journal of the Geological Society of London, 124, 405–25.Google Scholar
Ingham, J. K. & Tripp, R. P. 1991. The trilobite fauna of the Middle Ordovician Doularg Formation of the Girvan district, Scotland, and its palaeoenvironmental significance. Transactions of the Royal Society of Edinburgh: Earth Science, 82, 2754.CrossRefGoogle Scholar
Kelley, S. & Bluck, B. J. 1989. Detrital mineral ages from the Southern Uplands of Scotland using Ar-Ar laser probe. Journal of the Geological Society of London, 146, 401–3.CrossRefGoogle Scholar
Kelley, S. & Bluck, B. J. 1990. Discussion on detrital mineral ages from the Southern Uplands of Scotland using Ar-Ar laser probe. Journal of the Geological Society of London, 147, 882–4.Google Scholar
Lockley, M. G. 1980. Caradoc faunal associations between Bala and Dinas Mawddwy, North Wales. Bulletin of the British Museum (Natural History), Geological Series, 33, 165235.Google Scholar
McKerrow, W. S. & Elders, C. F. 1989. Movements on the Southern Upland Fault. Journal of the Geological Society of London, 146, 393–5.CrossRefGoogle Scholar
Mitchell, W. I. 1977. The Ordovician brachiopods from Pomeroy, Co. Tyrone. Palaeontographical Society Monograms.CrossRefGoogle Scholar
Murphy, F. C., Anderson, T. B., Daly, J. S., Gallagher, V., Graham, J. R., Harper, D. A. T., Johnston, J. D., Kennan, P. S., Kennedy, M. J., Long, C. B., Morris, J. H., O'Keeffe, W. G., Parkes, M., Ryan, P. D., Sloan, R. J., Stillman, C. J., Tietzsch-Tyler, D., Todd, S. P. & Wrafter, J. P. 1991. An appraisal of Caledonian suspect terranes in Ireland. Irish Journal of Earth Science, 11, 1141.Google Scholar
Oliver, W. A. Jr, 1980. The relationship of the scleractinian corals to the rugose corals. Paleohiology, 6, 146–60.CrossRefGoogle Scholar
Oliver, W. A. Jr, 1996. Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia. In Stanley, G. D. Jr, (ed.) Paleobiology and biology of corals, 107–34. The Paleontological Society Papers, 1. Lawrence, Kansas: Paleontological Society.Google Scholar
Owen, A. W. & Clarkson, E. N. K. 1992. Trilobites from Kilbucho and Wallace's Cast and the location of the Northern Belt of the Southern Uplands during the late Ordovician. Scottish Journal of Geology, 28, 317.CrossRefGoogle Scholar
Romano, S. L. 1995. Evolution of two architectural strategies among scleractinian corals inferred from phylogenetic analysis of DNA sequences. Seventh International Symposium of Fossil Cnidaria and Porifera, Madrid, Sept 1995, Abstracts, 77.Google Scholar
Romano, S. L. & Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271, 640–2.CrossRefGoogle Scholar
Roniewicz, E. & Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164, 233–40.Google Scholar
Scrutton, C. T. 1979. Early fossil cnidarians. In House, M. R. (ed.) The origin of major invertebrate groups, 161207. London and New York: Academic Press.Google Scholar
Scrutton, C. T. 1989. Amural arachnophyllid corals from the Silurian of the North Atlantic area. Palaeontology, 32, 153.Google Scholar
Scrutton, C. T. 1993. New Kilbuchophyllid corals from the Ordovician of the Southern Uplands, Scotland. Courier Forschungsinstitut Senckenberg, 164, 153–8.Google Scholar
Scrutton, C. T. 1996. The scleractiniamorph coral Kilbuchophyllia clarksoni at Kilbucho. Scottish Journal of Geology, 32, 91.CrossRefGoogle Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51 (3), 177208.CrossRefGoogle Scholar
Scrutton, C. T. & Clarkson, E. N. K. 1989. A new Palaeozoic scleractiniamorph coral. Fossil Cnidaria, 18 (2), 21–2.Google Scholar
Scrutton, C. T. & Clarkson, E. N. K. 1991. A new scleractinian-like coral from the Ordovician of the Southern Uplands, Scotland. Palaeontology, 34, 179–94.Google Scholar
Scrutton, C. T. & Parkes, M. A. 1992. The age and affinities of the coral faunas from the Lower Silurian rocks of the Charlestown inlier, Co. Mayo. Irish Journal of Earth Sciences, 11, 191–6.Google Scholar
Shaw, F. C. & Fortey, R. A. 1977. Middle Ordovician facies and trilobite faunas in N. America. Geological Magazine, 114 (6), 409443.CrossRefGoogle Scholar
Soper, N. J., Strachan, R. A., Holdsworth, R. E., Gayer, R. A. & Greiling, R. O. 1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society of London, 149, 871–80.CrossRefGoogle Scholar
Soper, N. J. & Woodcock, N. H. 1990. Silurian collision and sediment dispersal patterns in Southern Britain. Geological Magazine, 127, 527–42.CrossRefGoogle Scholar
Tripp, R. P. 1980. Trilobites from the Ordovician Ardwell Group of the Craighead Inlier, Girvan district, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 84, 87102.CrossRefGoogle Scholar
Tunnicliffe, S. P. 1982. A revision of late Ordovician bivalves from Pomeroy, Co. Tyrone, Ireland. Palaeontology, 25, 4388.Google Scholar
van den Horst, C. J. 1923. On the arrangement of the septa in eupsammid corals. Bijdragen tot de Dierkunde, 22, 107–11.CrossRefGoogle Scholar
Vaughan, T. W. & Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Special Papers, Geological Society of America, 44, xvi + 1363.CrossRefGoogle Scholar
Veron, J. E. N. 1995. Corals in space and time: biogeography and evolution of the Scleractinia. Ithaca: Cornell University Press.Google Scholar
Veron, J. E. N., Odorico, D. M., Chen, C. A. & Miller, D. J. 1996. Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15, 19.CrossRefGoogle Scholar
Wells, J. W. 1956. Scleractinia. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology, Part F. Coelenterata, 328444. Boulder, Colorado and Laurence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar