Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T19:11:40.347Z Has data issue: false hasContentIssue false

Spatially resolved optical emission of cubic GaN/AlN multi-quantum well structures

Published online by Cambridge University Press:  19 December 2014

D.J. As
Affiliation:
Department Physik, Universität Paderborn, Warburger Strasse 100, 33095 Paderborn, Germany
R. Kemper
Affiliation:
Department Physik, Universität Paderborn, Warburger Strasse 100, 33095 Paderborn, Germany
C. Mietze
Affiliation:
Department Physik, Universität Paderborn, Warburger Strasse 100, 33095 Paderborn, Germany
T. Wecker
Affiliation:
Department Physik, Universität Paderborn, Warburger Strasse 100, 33095 Paderborn, Germany
J.K.N. Lindner
Affiliation:
Department Physik, Universität Paderborn, Warburger Strasse 100, 33095 Paderborn, Germany
P. Veit
Affiliation:
Institut für Experimentelle Physik, Universität Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
A. Dempewolf
Affiliation:
Institut für Experimentelle Physik, Universität Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
F. Bertram
Affiliation:
Institut für Experimentelle Physik, Universität Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
J. Christen
Affiliation:
Institut für Experimentelle Physik, Universität Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
Get access

Abstract

In this contribution we report on the optical properties of cubic AlN/GaN asymmetric multi quantum wells (MQW) structures on 3C-SiC/Si (001) substrates grown by radio-frequency plasma-assisted molecular beam epitaxy (MBE). Scanning transmission electron microscopy (STEM) and spatially resolved cathodoluminescence (CL) at room temperature and at low temperature are used to characterize the optical properties of the cubic AlN/GaN MQW structures. An increasing CL emission intensity with increasing film thickness due to the improved crystal quality was observed. This correlation can be directly connected to the reduction of the linewidth of x-ray rocking curves with increasing film thickness of the c-GaN films. Defects like stacking faults (SFs) on the {111} planes, which also can be considered as hexagonal inclusions in the cubic crystal matrix, lead to a decrease of the CL emission intensity. With low temperature CL line scans also monolayer fluctuations of the QWs have been detected and the observed transition energies agree well with solutions calculated using a one-dimensional (1D) Schrödinger-Poisson simulator.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menninger, J., Reiche, M., Ploog, K.H., Nature 406, 865 (2000).CrossRefGoogle Scholar
As, D.J., Microelectronics Journal 40, 204 (2009).CrossRefGoogle Scholar
Novikov, S.V., Stanton, N.M., Campion, R.P., Foxon, C.T., Kent, A.J., J. Cryst. Growth 310, 3964 (2008).CrossRefGoogle Scholar
Feuillet, G., Widmann, F., Daudin, B., Schuler, J., Arlery, M., Rouvie`re, J.L. Pelekanos, N., Briot, O., Materials Science and Engineering B 50, 233 (1997).CrossRefGoogle Scholar
Sumnavadee, S., Sanorpim, S., Paosawat, B. and Onabe, K., J. of the Microscopy Society of Thailand 24 (2), 136 (2010).Google Scholar
Moustakas, Th. D., Phys. Status Solidi (a) 210, 169 (2013).CrossRefGoogle Scholar
Albrecht, M., Christiansen, S., Salviati, G., Zanotti-Fregonara, C., Rebane, Y. T., Shreter, Y. G., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K. J., Bremser, M. D., Davis, R. F., and Strunk, H. P., MRS Symp. Proc. 468, 293 (1997).CrossRefGoogle Scholar
Lähnemann, J., Brandt, O., Jahn, U., Pfüller, C., Roder, C., Dogan, P., Grosse, F., Belabbes, A., Bechstedt, F., Trampert, A., and Geelhaar, L., Phys. Rev. B 86, 081302(R) (2012).Google Scholar
Liu, R., Bell, A. and Ponce, F.A., Appl. Phys. Lett. 86, 021908 (2005).CrossRefGoogle Scholar
Bertram, F., Riemann, T., Christen, J., Kaschner, A., Hoffmann, A., Thomsen, C., Hiramatsu, K., Shibata, T., and Sawaki, N., Appl. Phys. Lett. 74, 359 (1999).CrossRefGoogle Scholar
Chassagne, T., Leycuras, A., Balloud, C., Arcade, P., Peyre, H. and Juillaguet, S., Materials Science Forum Vols. 457-460, 273 (2004).CrossRefGoogle Scholar
Schupp, T., Lischka, K. and As, D.J., J. of Cryst. Growth 312, 1500 (2010).CrossRefGoogle Scholar
Schörmann, J., Potthast, S., As, D.J., Lischka, K., Appl. Phys. Lett. 90, 041918 (2007).CrossRefGoogle Scholar
Kemper, R.M., Mietze, C., Hiller, L., Stauden, T., Pezoldt, J., Meertens, D., Luysberg, M., As, D.J. and Lindner, J.K.N., Phys. Stat. Sol. (c), 11, 265 (2014).Google Scholar
As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D., and Lischka, K., Appl. Phys. Lett. 70, 1311 (1997).CrossRefGoogle Scholar
Wecker, T., Hörich, H., Feneberg, M., Goldhahn, R., Reuter, D. and As, D.J., Phys. Stat. Sol. (b), (2014) (accepted).Google Scholar
Kemper, R.M., Veit, P., Mietze, C., Dempewolf, A., Wecker, T., Christen, J., Lindner, J.K.N. and As, D.J.: Phys. Stat. Sol. (c) (2014) (submitted)Google Scholar
Martinez-Guerrero, E., Bellet-Almalric, E., Martinet, L., Feuillet, G., Mariette, H., Holliger, P., Dubois, C., Bru-Chevallier, C., Aboughe Nze, P., Chassagne, T., Ferro, G., Monteil, Y. and Daudin, B., J. Appl. Phys. 91, 4983 (2002).CrossRefGoogle Scholar
Birner, S., Schindler, C., Greck, P., Sabathil, M., and Vogl, P., J. Comput. Electron. 8, 267 (2009).CrossRefGoogle Scholar