Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T16:19:07.764Z Has data issue: false hasContentIssue false

Cation Distribution in Transition Metal Oxide Spinels: Thermodynamic and Kinetic Considerations

Published online by Cambridge University Press:  21 February 2011

S. E. Dorris
Affiliation:
Department of Materials Science and Engineering Northwestern University, The Technological Institute 2145Sheridan Road, Evanston, IL 60201
D. S. Erickson
Affiliation:
Department of Materials Science and Engineering Northwestern University, The Technological Institute 2145Sheridan Road, Evanston, IL 60201
T. O. Mason
Affiliation:
Department of Materials Science and Engineering Northwestern University, The Technological Institute 2145Sheridan Road, Evanston, IL 60201
Get access

Abstract

The point defect reaction which governs the magnetic and electrical properties of transition metal oxide spinels is the distribution of cations between tetrahedral and octahedral sublattices. Two types of redistribution occur -- ionic and electronic. The thermodynamics and kinetics of these processes can be studied via the electrical properties, thermoelectric coefficient and conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmalzried, H., Solid State Reactions (Academic Press, New York 1974).Google Scholar
2. Rogalla, W. and Schmalzried, H., Ber. Bunsenges. Phys. Chem. 72, 12 (1968).Google Scholar
3. Walters, D. S. and Wirtz, G. P., J. Am. Ceram. Soc. 54, 563 (1971).Google Scholar
4. Rezlescu, N., Cuciureanu, E., Ioan, C., and Luca, E., Phys. Stat. Sol.(a) 11, 351 (1972).CrossRefGoogle Scholar
5. Luca, E., Maxim, G., and Craus, M. L., Phys. Stat. Sol.(a) 14, K153 (1972).Google Scholar
6. Kozlowski, L. and Zarke, W., Acta Phys. Polonica A13, 79 (1973).Google Scholar
7. Craus, M. L. and Rezlescu, N., Phys. Stat. Sol.(a) 50, K225 (1978).Google Scholar
8. Simsa, Z. and Simsova, J., Czech. J. Phys. B24. 439 (1974).Google Scholar
9. Simsova, J. and Simsa, Z., Czech. J. Phys. B24, 449 (1974).Google Scholar
10. Klerk, J. and Brabers, V.A.M., Phys. Stat. Sol.(a) 23, K107 (1974).CrossRefGoogle Scholar
11. Faller, J. G. and Birchenall, C. E., J. Appl. Cryst. 3, 496 (1970).CrossRefGoogle Scholar
12. Vologin, V. G., Dubinin, S. F., Parkhomenko, V. D., Chukalkin, Y. G., Goshchitskii, B. N., Sidorov, S. K., and Petrov, V. V., Phys. Stat. Sol.(a) 38, K147 (1976).CrossRefGoogle Scholar
13. Burnham, C. W., Ohaski, Y., Hafner, S. S., and Virgo, D., Am. Mineral. 56, 850 (1971).Google Scholar
14. Wu, C. C. and Mason, T. O., J. Am. Ceram. Soc. 64, 520 (1981).Google Scholar
15. Navrotsky, A. and Kleppa, O. J., Inorg, J.. Nucl. Chem. 29, 2701 (1967).Google Scholar
16. Pelton, A. D., Schmalzried, H., and Sticher, J., Ber. Bunsenges. Phys. Chem. 83, 241 (1979).Google Scholar
17. Pelton, A. D., Schmalzried, H., and Sticher, J., J. Phys. Chem. Solids 40, 1103 (1979).Google Scholar
18. Petric, A. and Jacob, K. T., J. Am. Ceram. Soc. 65, 117 (1982).Google Scholar
19. Trestman-Matts, A., Dorris, S. E., Kumarakrishnan, S., and Mason, T. O., “Thermoelectric Determination of Cation Distributions Fe3O4-Fe2TiO4, J. Am. Ceram. Soc. 66, December (1983).Google Scholar
20. Marshall, C. P. and Dollase, W. A., “Cation Arrangement in Iron-Zinc-Chromium Spinel Oxides”, Am. Mineral., in press.Google Scholar
21. Wu, C. C., Kumarakrishnan, S., and Mason, T. O., J. Solid St. Chem. 37, 144 (1981).CrossRefGoogle Scholar
22. Trestman-Matts, A., Dorris, S. E., and Mason, T. O., “Thermoelectric Determination of Cation Distributions in Fe3O4-MgFe2O4, J. Am. Ceram. Soc. 67, January (1984).Google Scholar
23. Callen, H. B., Harrison, S. E., and Kriessman, C. J., Phys. Rev. 103, 851 (1956).Google Scholar
24. Datta, R. K. and Roy, R., Z. Kristall, 121, 410 (1965).Google Scholar
25. Cooley, R. F. and Reed, J. S., J. Am. Ceram. Soc. 55, 395 (1972).CrossRefGoogle Scholar
26. Grover, J. E. and Orville, P. M., Geochim. Cosmochim. Acta 33, 205 (1969).CrossRefGoogle Scholar
27. O`Neill, H.S.C. and Navrotsky, A., Am. Mineral. 68, 181 (1983).Google Scholar
28. O`Neill, H.S.C. and Navrotsky, A., Am. Mineral., in press.Google Scholar
29. Metselaar, R., Van Tol, R. E., and Piercy, P., J. Solid St. Chem. 38, 335 (1981).CrossRefGoogle Scholar
30. Dieckmann, R. and Schmalzried, H., Ber. Bunsenges. Phys. Chem. 81, 414 (1977).CrossRefGoogle Scholar
31. Mason, T. O. and Bowen, H. K., J. Am. Ceram. Soc., 64, 84 (1981).Google Scholar
32. Pucher, R., Z. Geophys. 37, 349 (1971).Google Scholar
33. Dieckmann, R., Witt, C. A., and Mason, T. O., Ber. Bunsenges. Phys. Chem. 87, 495 (1983).Google Scholar