Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T20:03:11.899Z Has data issue: false hasContentIssue false

Study of GaInP/GaAs/GaInP Double Heterostructures Grown by MOCVD with Photoreflectance and Photoluminescence

Published online by Cambridge University Press:  22 February 2011

H. Kuan
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, I University Road, Tainan, Taiwan, R.O.C.
S.C. Shei
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, I University Road, Tainan, Taiwan, R.O.C.
W.J. Tzou
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, I University Road, Tainan, Taiwan, R.O.C.
Y. K. Su
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, I University Road, Tainan, Taiwan, R.O.C.
Get access

Abstract

The GaInP-GaAs single quantum well structures grown by metal-organic chemical vapor deposition (MOCVD) were investigated by photoreflectance (PR) and photoluminescence (PL) spectroscopies. The built-in electric field in the GaAs close to the top surface was evaluated using the observed Franz-Keldysh oscillations. The fundamental energy gaps and broadening parameters were also determined. The full width at half maximum (FWHM) of the GaInP PL peak is 11 meV

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pollak, F. H. and Glembocki, O., Proc. Society of Photo-Optical Instrumentaion Engineers 946, 2 (SPIE, Bellingham, 1988).Google Scholar
2 Bottka, N., Gaskill, D. K., Sillmon, R. S., Henry, R. and Lesser, R.: J. Electron. Mater. 17, 161 (1988).Google Scholar
3. Raccah, P. M., Garland, J. W., Buttril, S. E. Jr, Francke, L. and Jackson, J., Appl. Phys. Lett. 52, 1585 (1988).Google Scholar
4 Bhattacharys, R. N., Shen, H., Parayanthal, P., Pollak, F. H., Coutts, T. and Aharoni, H. Phys. Rev. B37, 4044 (1988)Google Scholar
5. Pollak, F. H. and Shen, H., Proc. Society of Photo-optical Instrumentation Engineers, 1037, 16 (SPIE, Bellingham, 1989).Google Scholar
6. Tober, R., Pamulapati, J., Bhattacharya, P. and Oh, J. E.: J. Electron. Mater. 18. 379 (1989).Google Scholar
7. Badkashan, A., Durbin, C., Giordana, A., Glossar, R., Lambert, S. A. and Liu, J.: Nanostructure Physics and Fabrication, eds. Reed, M. A. and Kirk, W. P., 485 (Academic, Boston, 1989)Google Scholar
8. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. and Hafizi, M., Appl. Phys. Lett. 56, 1278 (1990).Google Scholar
9. Sydor, M., Jahren, N., Michael, W. C., Lampert, W. V., Haas, T. W., Yen, M. Y., Mudare, S. M. and Tomich, D. H., J. Appl. Phys. 67, 7423 (1990).Google Scholar
10. Glembocki, O. J., Shanabrook, B. V., Ottka, N., Beard, W. T. and Comas, J., Proc. SPIE 524,86 (1985).Google Scholar
11. Shay, J. L., Phys. Rev. B2, 803 (1970).Google Scholar
12 Aspens, D. E. and Studna, A. A., Phys. Rev. B7, 4605 (1973).Google Scholar
13. Chandreskhar, M. and Pollak, F. H., Phys Rev. B15, 2127 (1977).Google Scholar
14. Alibert, C., Bordure, G. and Laugier, A., Surf. Sci. 37, 623 (1973).Google Scholar
15. Nishino, T., Inoue, Y., Hamakwa, Y., Kondow, M. and Minagawa, S., Appl. Phys. Lett. 53, 583 (1990).Google Scholar
16. Lauttenschlager, P., Carriags, M., Logothesdis, S. and Cardona, M.: Phys. Rev. B35, 9174 (1987).Google Scholar
17. Goaplan, S., Lauttenschlager, P. and Cardona, M., Phys. Rev. B35, 5577 (1987).Google Scholar