Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T14:50:01.570Z Has data issue: false hasContentIssue false

Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U–Th–Pb dating of monazite

Published online by Cambridge University Press:  10 September 2008

JAROSLAW MAJKA*
Affiliation:
AGH, University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
STANISLAW MAZUR
Affiliation:
University of Wrocław, Institute of Geological Sciences, Pl. M. Borna 9, 50-204 Wrocław, Poland
MACIEJ MANECKI
Affiliation:
AGH, University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
JERZY CZERNY
Affiliation:
AGH, University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
DANIEL K. HOLM
Affiliation:
Kent State University, Department of Geology, Kent, Ohio 44242, USA
*
Author for correspondence: jmajka@poczta.fm

Abstract

Southwest Spitsbergen, Wedel Jarlsberg Land, consists of two Proterozoic crustal blocks with differing metamorphic histories. Both blocks experienced Caledonian greenschist-facies metamorphism, but only the southern block records an earlier pervasive M1 amphibolite-facies metamorphism and strong deformational fabric. In situ EMPA total-Pb monazite geochronology from both matrix and porphyroblast inclusion results indicate that the older M1 metamorphism occurred at 643 ± 9 Ma, consistent with published cooling ages of c. 620 Ma (hornblende) and 580 Ma (mica) obtained from these same rocks. This region thus contains a lithostratigraphic profile and metamorphic history which are unique within the Svalbard Archipelago. Documentation of a pervasive late Neoproterozoic Barrovian metamorphism is difficult to reconcile with a quiescent non-tectonic regime typically inferred for this region, based on the occurrence of rift-drift sequences on the Baltic and Laurentian passive margins. Instead, our new metamorphic age implies an exotic origin of the pre-Devonian basement exposed in SW Spitsbergen and supports models of terrane assembly postulated for the Svalbard Archipelago.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

Now at GETECH, Kitson House, Elmete Hall, Elmete Lane, Leeds LS8 2LJ, UK

References

Balashov, Ju. A., Tebenkov, A. M., Ohta, Y., Larionov, A. N., Sirostkin, A. N., Gannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian U–Pb zircon ages of quartz porphyry and rhyolite clasts in a metacoglomerate at Vimsodden, southern Spitsbergen. Polar Research 14, 291302.Google Scholar
Balashov, Ju. A., Tebenkov, A. M., Peucat, J. J., Ohta, Y., Larionov, A. N. & Sirostkin, A. N. 1996. Rb–Sr whole rock and U–Pb zircon datings of the granitic–gabbroic rocks from the Skålfjellet Subgroup, southwest Spitsbergen. Polar Research 15, 167–81.Google Scholar
Bergh, S. G., Braathen, A. & Andresen, A. 1997. Interaction of basement-involved and thin-skinned tectonism in the Tertiary Fold-Thrust Belt of Central Spitsbergen, Svalbard. AAPG Bulletin 81, 637–61.Google Scholar
Birkenmajer, K. 1958. Preliminary report on the stratigraphy of the Hecla Hoek Formation in Wedel Jarlsberg Land, Vestspitsbergen. Bulletin de l'Academie Polonaise Sciences, Series des Sciences des Chimique, Geologiques, Geographique 6, 143–50.Google Scholar
Birkenmajer, K. 1975. Caledonides of Svalbard and plate tectonics. Bulletin of the Geological Society of Denmark 24, 119.Google Scholar
Birkenmajer, K. 1981. The geology of Svalbard, the western part of the Barents Sea, and the continental margin of Scandinavia. In The oceans basins and margins, Vol. 5: The Arctic Ocean (eds Nairn, A. E. M., Churkin, M. and Stehli, F. G.), pp. 265329. New York: Plenum Press.Google Scholar
Birkenmajer, K. 1992. Precambrian succession at Hornsund, south Spitsbergen: A lithostratigraphic guide. Studia Geologica Polonica 98, 766.Google Scholar
Björnerud, M. 1990. Upper Proterozoic unconformity in northern Wedel-Jarlsberg Land, southwest Spitsbergen: lithostratigrapby and tectonic implications. Polar Research 8, 127–40.Google Scholar
Braathen, A., Bergh, S. G. & Maher, H. D. 1995. Structural outline of a Tertiary basement-cored uplift/inversion structure in western Spitsbergen, Svalbard: Kinematics and controlling factors. Tectonics 14, 95119.Google Scholar
Catlos, E. J., Gilley, L. D. & Harrison, T. M. 2002. Interpretation of monazite ages obtained via in situ analysis. Chemical Geology 188, 193215.Google Scholar
Cherniak, D. J., Watson, E. B., Grove, M. & Harrison, T. M. 2004. Pb diffusion in monazite: A combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829–40.Google Scholar
Czerny, J., Kieres, A., Manecki, M. & Rajchel, J. 1993. Geological map of the SW part of Wedel Jarlsberg Land, Spitsbergen 1:25000 (ed. Manecki, A.), Cracow: Institute of Geology and Mineral Deposits, 61 pp.Google Scholar
Dallmann, W. K., Andresen, A., Bergh, S. G., Maher, H. D. & Ohta, Y. 1993. Tertiary fold-and-thrust belt of Spitsbergen (Svalbard). Norsk Polarinstitutt Meddelelser 128, 26 pp.Google Scholar
Dallmeyer, R. D., Peucat, J. J. & Ohta, Y. 1990. Tectonothermal evolution of contrasting metamorphic complexes in northwestern Spitsbergen (Biskayerhalvøya): Evidence from 40Ar/39Ar and Rb–Sr mineral ages. Geological Society of America Bulletin 102, 653–63.Google Scholar
Dalziel, I. W. D. 1997. Overview: Neoproterozoic–Palaeozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin 109, 1642.Google Scholar
Ferry, J. M. 2000. Patterns of mineral occurrence in metamorphic rocks. American Mineralogist 85, 1573–88.Google Scholar
Flood, B., Gee, D. G., Hjelle, A., Siggerud, T. & Winsnes, T. S. 1969. The geology of Nordaustlandet, northern and central parts. Norsk Polarinstitutt Skrifter 146, 1139.Google Scholar
Gavrilenko, B. V., Balashov, Ju. A., Tebenkov, A. M. & Larionov, A. N. 1993. U–Pb early Proterozoic age of “relict” zircon from high potassium quartzose porphyries of Wedel Jarlsberg Land, SW Spitsbergen. Geochimija 1, 154–8.Google Scholar
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R., Wallis, R. H. & Winsnes, T. S. 1966. Radiometric age determinations on rocks from Spitsbergen. Norsk Polarinstitutt Skrifter 137, 139.Google Scholar
Gee, D. G., Björklund, L. & Stølen, L. K. 1994. Early Proterozoic basement in Ny Friesland – Implications for the Caledonian tectonics of Svalbard. Tectonophysics 231, 171–82.Google Scholar
Gee, D. G., Johansson, Å., Ohta, Y., Tebenkov, A. M., Krasilščhikov, A. A., Balashov, Y. A., Larionov, A. N., Gannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian basement and a major unconformity within the Caledonides of Nordaustlandet, Svalbard. Precambrian Research 70, 215–34.Google Scholar
Gee, D. G. & Page, L. M. 1994. Caledonian terrane assembly on Svalbard: New evidence from 40Ar/39Ar dating in Ny Friesland. American Journal of Science 294, 1166–86.Google Scholar
Gee, D. G. & Tebenkov, A. M. 2004. Svalbard: a fragment of the Laurentian margin. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. and Pease, V.), pp. 191206. Geological Society of London, Memoir no. 30.Google Scholar
Gieré, R. & Sorensen, S. S. 2004. Allanite and Other REE-Rich Epidote-Group Minerals. Reviews in Mineralogy and Geochemistry 56, 431–93.Google Scholar
Gorbatschev, R. 1985. Precambrian basement of the Scandinavian Caledonides. In The Caledonide orogen – Scandinavia and related areas (eds Gee, D. G. and Sturt, B. A.), pp. 197213. Chichester: Wiley.Google Scholar
Gromet, L. P. & Gee, D. G. 1998. An evaluation of the age of high-grade metamorphism in the Caledonides of Biskayerhalvøya. GFF 120, 199208.Google Scholar
Harland, W. B. 1959. The Caledonian sequence in Ny Friesland, Spitsbergen. Quarterly Journal of the Geological Society of London 114, 307–43.Google Scholar
Harland, W. B. 1985. Caledonide Svalbard. In The Caledonide orogen – Scandinavia and related areas (eds Gee, D. G. and Sturt, B. A.), pp. 9991016. Chichester: Wiley.Google Scholar
Harland, W. B. & Gayer, R. A. 1972. The Arctic Caledonides and earlier oceans. Geological Magazine 109, 289314.Google Scholar
Harland, W. B., Scott, R. A., Auckland, K. A. & Snape, I. 1992. The Ny Friesland orogen, Spitsbergen. Geological Magazine 129, 679708.Google Scholar
Hellman, F. J., Gee, D. G., Johansson, Å. & Witt-Nilsson, P. 1997. Single-zircon Pb evaporation geochronology constrains basement-cover relationships in the Lower Hecla Hoek Complex of northern Ny Friesland, Svalbard. Chemical Geology 137, 117–34.Google Scholar
Henriksen, N. 1985. The Caledonides of central East Greenland 70°–76° N. In The Caledonide orogen – Scandinavia and related areas (eds Gee, D. G. and Sturt, B. A.), pp. 10951114. Chichester: Wiley.Google Scholar
Hoffman, P. E. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 281, 1342–6.Google Scholar
Holtedahl, O. 1926. Notes on the geology of northwestern Spitsbergen. Result from Norsk Statsundestøt. Skrifter om Svalbard og Ishavet 5 (8), 28 pp.Google Scholar
Janots, E., Brunet, F., Goffe, B., Poinssot, C., Byrchard, M. & Cemic, L. 2007. Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology 154, 114.Google Scholar
Johansson, Å., Gee, D. G., Björklund, L. & Witt-Nilsson, P. 1995. Isotope studies of granitoids from the Bangenhuk Formation, Ny Friesland Caledonides, Svalbard. Geological Magazine 132, 303–20.Google Scholar
Johansson, Å., Larionov, A. N., Gee, D. G., Ohta, Y., Tebenkov, A. M. & Sandelin, S. 2004. Grenvillian and Caledonian tectono-magmatic activity in northeasternmost Svalbard. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 207–32. Geological Society of London, Memoir no. 30.Google Scholar
Konečný, P., Siman, P., Holicky, I., Janak, M. & Kollarova, V. 2004. Metodika datovania monazitu pomocou elektronoveho mikroanalyzatora. Mineralia Slovaca 36, 225–35.Google Scholar
Krasilščhikov, A. A. 1979. Stratigraphy and tectonics of the Precambrian of Svalbard. Norsk Polarinstitutt Skrifter 167, 7380.Google Scholar
Krenn, E. & Finger, F. 2006. Thermobarometry and electron microprobe dating of monazites of the Winnebach migmatite (Ötztal-Stubai-Kristallin, Austria): clues to the P–T–t history of a complex pre-Variscan metamorphic basement unit of the Eastern Alps. Geophysical Research Abstracts 8, 1607-7962/gra/EGU06-A-05563.Google Scholar
Kulling, O. 1934. Scientific results of the Swedish–Norwegian Arctic Expedition in the summer of 1931, Part XI. The “Hecla Hoek Formation” around Hinlopenstredet. Geographiska Annaler 16, 161254.Google Scholar
Kumpulainen, R. & Nystuen, J. P. 1985. Late Proterozoic basin evolution and sedimentation in the westernmost part of Baltoscandia. In The Caledonide orogen – Scandinavia and related areas (eds Gee, D. G. and Sturt, B. A.), pp. 213–32. Chichester: Wiley.Google Scholar
Kuznetsov, N. B., Soboleva, A. A., Udoratina, O. V., Hertseva, M. V. & Andreichev, V. L. 2007. Pre-Ordovician tectonic evolution and volcano–plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European Craton. Gondwana Research 12, 305–23.Google Scholar
Lowell, J. D. 1972. Spitsbergen Tertiary orogenic belt and the Spitsbergen fracture zone. Geological Society of America Bulletin 83, 30913102.Google Scholar
Majka, J. & Budzyń, B. 2006. Monazite breakdown in metapelites from Wedel Jarlsberg Land, Svalbard – preliminary report. Mineralogia Polonica 37, 61–9.Google Scholar
Majka, J., Czerny, J. & Manecki, M. 2004. Petrographical charcteristics of the Isbjørnhamna Group Rocks (Wedel Jarlsberg Land, Spitsbergen). Mineralogical Society of Poland – Special Papers 24, 279–82.Google Scholar
Manby, G. M. 1990. The petrology of the Harkerbreen Group, Ny Friesland, Svalbard: protoliths and tectonic significance. Geological Magazine 127, 129–46.Google Scholar
Manecki, M., Holm, D. K., Czerny, J. & Lux, D. 1998. Thermochronological evidence for late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine 135, 63–9.Google Scholar
Montel, J. M., Foret, S., Veschambre, M., Nicollet, Ch. & Provost, A. 1996. Electron microprobe dating of monazite. Chemical Geology 131, 3753.Google Scholar
Ohta, Y. 1982. Lithostratigraphy of the Hecla Hoek rocks in central Nordaustlandet and their relationships to the Caledonian granitic–migmatitic rocks. Norsk Polarinstitutt. Skrifter 178, 4160.Google Scholar
Ohta, Y., Dallmeyer, R. D. & Peucat, J. J. 1989. Caledonian terranes in Svalbard. Geological Society of America Special Paper 230, 115.Google Scholar
Peucat, J. J., Ohta, Y., Gee, D. G. & Bernard-Griffiths, J. 1989. U–Pb, Sr, and Nd evidence for Grenvillian and latest Proterozoic tectonothermal activity in the Spitsbergen Caledonides, Arctic Ocean. Lithos 22, 275–85.Google Scholar
Sandford, K. S. 1956. The stratigraphy and structure of the Hecla Hoek Formation and its relationship to a subjacent metamorphic complex in North-East Land (Spitsbergen). Quarterly Journal of the Geological Society of London 112, 339–62.Google Scholar
Smulikowski, W. 1965. Petrology and some structural data of lower metamorphic formations of the Hecla Hoek Succession in Hornsund, Vestspitsbergen. Studia Geologica Polonica 18, 1107.Google Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G., Van Der Voo, R., McKerrow, W. S., Brasier, M. D., Sturt, B. A. & Walderhaug, H. J. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic – A tale of Baltika and Laurentia. Earth-Science Reviews 40, 229–58.Google Scholar
Williams, M. L., Jercinovic, M. J., Gonclaves, P. & Mahan, K. 2006. Format and philosophy for collecting, compiling and reporting microprobe monazite ages. Chemical Geology 225, 115.Google Scholar
Wing, B., Ferry, J. M. & Harrison, T. M. 2003. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology 145, 228–50.Google Scholar
Supplementary material: File

Majka Supplementary Material

Supplementary Table.doc

Download Majka Supplementary Material(File)
File 159.2 KB