Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T04:44:17.856Z Has data issue: false hasContentIssue false

On coefficient ideals

Published online by Cambridge University Press:  11 June 2018

R. CALLEJAS-BEDREGAL
Affiliation:
Departamento de Matemática, CCEN - Centro de Ciências Exatas e da Natureza, UFPB - Universidade Federal da Paraíba e-mail: roberto@mat.ufpb.br
V. H. JORGE PÉREZ
Affiliation:
Departamento de Matemática, ICMC - Instituto de Ciências da Computação e Matemática, USP - Universidade de São Paulo e-mail: vhjperez@icmc.usp.br
M. DUARTE FERRARI
Affiliation:
Departamento de Matemática, CCE - Centro de Ciências Exatas, UEM - Universidade Estadual de Maringá e-mail: mdsilva@uem.br

Abstract

Let (R, 𝔪) be a Noetherian local ring and I an arbitrary ideal of R with analytic spread s. In [3] the authors proved the existence of a chain of ideals II[s] ⊆ ⋅⋅⋅ ⊆ I[1] such that deg(PI[k]/I) < sk. In this article we obtain a structure theorem for this ideals which is similar to that of K. Shah in [10] for 𝔪-primary ideals.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amao, J. O. On a certain Hilbert polynomial. J. London Math. Soc. (2) 14, 1 (1976), 1320.Google Scholar
[2] Callejas–Bedregal, R., Pérez, V. H. Jorge and Silva, M. D.. On coefficient modules and Ratliff–Rush closure. Preprint.Google Scholar
[3] Herzog, J., Puthenpurakal, T. and Verma, J. K. Hilbert polynomials and powers of ideals. Math. Proc. Camb. Phil. Soc. 145 (2008), 623642.Google Scholar
[4] Huneke, C. and Swanson, I. Integral closure of ideals, rings and modules. London Math. Soc. Lecture Note Series (Cambridge University Press, 2006).Google Scholar
[5] McAdam, S. Asymptotic prime divisors. Lecture Notes in Math. 1023 (Springer-Verlag, Berlin, 1983).Google Scholar
[6] Ratliff, L. J. and Rush, D. Two notes on reductions of ideals. Indiana University Math J. 27 (1978), 929934.Google Scholar
[7] Rees, D. $\Mathcal{A}$-transforms of local rings and a theorem on multiplicities of ideals. Cambridge Philos. Soc. 57 (1961), 817.Google Scholar
[8] Rees, D. Amao's theorem and reduction criteria. J. London Math. Soc. (2) 32 (1985), no. 3, 404410.Google Scholar
[9] Rees, D. Lectures on the asymptotic theory of ideals. London Math. Soc. Lecture Note Series, 113 (Cambridge University Press, Cambridge, 1988).Google Scholar
[10] Shah, K. K. Coefficient ideals Trans. Math. Soc. 327 (1991), 373384.Google Scholar
[11] Samuel, P. and Zariski, O. Commutative Algebra. Vol. II (Springer-Verlag, Berlin, 1975).Google Scholar