Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T18:36:17.424Z Has data issue: false hasContentIssue false

Novel Photoimaging Schemes at Polymer Surfaces: Their Role in High Resolution Lithography

Published online by Cambridge University Press:  21 February 2011

Gary N. Taylor
Affiliation:
AT&T Bell Laboartories, Murray Hill, New Jersey 07974
Omkaram Nalamasu
Affiliation:
AT&T Bell Laboartories, Murray Hill, New Jersey 07974
Richard S. Hutton
Affiliation:
AT&T Bell Laboartories, Murray Hill, New Jersey 07974
Get access

Abstract

Polymer surfaces play essential roles in many technical arenas, but their importance in imaging science and technology has only recently been established. As optical lithography for integrated circuit applications pushes below 0.5μm feature sizes, ever shorter wavelengths and lenses with larger numerical aperatures are required. These narrow the depth-of-focus to such a degree that it eventually becomes less than the substrate topography, resist film thickness and wafer nonuniformity contributions to focus placement. Thick single-layer, surface-conforming resists will not be able to record the aerial image accurately.

Surface imaging of planarized single-layer or bilayer organic films offers a means for minimizing the depth-of-focus constraints. This paper outlines this general concept which includes radiation-induced chemical changes in the surface and near-surface regions, amplification of these events by gas-solid reactions with inorganic and organometallic agents and plasma development using an oxygen plasma. Two approaches to surface imaging are discussed. The first employs Plasmask® resist, a very absorbing diazonaphthoquinone-functionalized novolac resin which is exposed and functionalized in the topmost several hundred nm of film. According to Coopmans, Roland and coworkers [14] and Pierrat, et al., [22] two tones are possible depending upon the processing. The present study reports results obtained for both processing modes using 248.4 nm lithography.

The second approach involves imaging at the surface and utilizes one of the oldest polymer photoreactions, photo-oxidation, in the imaging step. Hydrophobic aromatic polymers are first irradiated in air to give hydrophilic groups. These sorb water selectively on the hydrophilic areas. The water is reacted in a separate step with an inorganic or organometallic compound such as TiC14 to give a metal oxide film (TiO2) on the exposed areas. Development with an oxygen plasma gives negative tone patterns because TiO2 reduces the etching rate by a factor of ∼ 500 in the exposed regions. Imaging is dependent upon the polymer structure, among other things, and is optimized at shorter wavelengths likely to be used in future exposure systems. From the present results we feel that surface imaging resists may realize 0.25 μm resolution at 193 nm and that <0.10 μm resolution may be achieved using x-ray radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schonhorn, H. in “Polymer Surfaces”, Clark, D. T. and Feast, W. J., Ed., John Wiley and Sons, Inc., New York, 1978, pp. 213233; S. Affrossman, J. M. R. MacAllister, R. A. Pethrick, B. Thomson, N. M. D. Brown and B. J. Meehan, in “Polymer Surfaces and Interfaces”, W. J. Feast and H. S. Munro, Eds., John Wiley and Sons, Inc., New York, 1987, pp. 99-117.Google Scholar
[2] Sletyr, U. B., Sara, M. and Pum, D., Microelectronic Eng., 9, 13 (1989).Google Scholar
[3] Papers in “Advances in Polymer Friction and Wear”, Lee, L.-H., Ed., Vol. 5A and 5B in the “Polymer Science and Technology Series”, Plenum Press, New York, 1974; “Polymer Wear and Its Control”, L.-H. Lee, Ed., ACS Symp. Series 287, Amer. Chem. Soc., Washington, DC, 1985.Google Scholar
[4] Kramer, E. J. in “Electronic Packaging and Materials Science”, Giess, E. A., Lu, K.-N. and Uhlmann, D. R., Eds., Mat'ls Res. Soc. Symp. Proc., 40, 227 (1985).Google Scholar
[5] Somasekharan, K. N. and Subramanian, R. V. in “Modification of Polymers”, Carraher, C. E. Jr., and Lauda, M., Eds., ACS Symp. Series 121, Amer. Chem. Soc., Washington, DC, 1980, pp. 165181.Google Scholar
[6] Taylor, G. N., Nalamasu, O. and Stillwagon, L. E., Microelectronic Eng., 9, 513 (1989).Google Scholar
[7] Chow, S. L., Hedgecock, N. E., Schlesinger, M. and Rezek, J., J. Electrochem. Soc., 119, 1013 (1972).Google Scholar
[8] Finter, J., U. S. Patent 4677155 (1987).Google Scholar
[9] Orvek, K. J., Garza, C. M. and Doering, R. R., Proc. SPIE, 1086, 615 (1989).Google Scholar
[10] Taylor, G. N., Stillwagon, L. E. and Venkatesan, T. N. R., J. Electrochem. Soc., 131, 1654 (1984).Google Scholar
[11] MacDonald, S. A., Ito, H., Hiraoka, H. and Willson, C. G., “Proc. Reg. Tech. Conf.”, Mid-Hudson Sect., Soc. Plast. Eng., Ellenville, New York, Oct. 28-30, 1985, pp. 177196.Google Scholar
[12] Taylor, G. N. and Wolf, T. M., Polym. Eng. and Sci., 20, 1087 (1980).Google Scholar
[13] Taylor, G. N. and Wolf, T. M. and Moran, J. M., J. Vac. Sci. and Technol., 19, 872 (1980).Google Scholar
[14] Coopmans, F. and Roland, B., Solid State Technol., 30, 6, 93 (1987).Google Scholar
[15] Coopmans, F. and Roland, B., Proc. SPIE, 631, 34 (1986).Google Scholar
[16] Lombaerts, P., Roland, B., Selino, A., Goethals, A. M. and Hove, L. van den, Proc. Microcircuit Eng. 88, Cambridge, England, Sept. 26-28, 1989, Abst. P-29.Google Scholar
[17] Lin, B. J., Microelectronic Eng., 6, 31 (1987).Google Scholar
[18] Das, S., Gaw, H. and Hollman, R., “Proc. 1988 KTI Conf. on Microlithrgraphy”, San Diego, Calif., Nov. 10-11, 1988.Google Scholar
[19] Garza, C. M., Misium, G. R., Doering, R. R. and Roland, B., Proc. SPIE, 1086, 583 (1989).Google Scholar
[20] Hutton, R. S., Kostelak, R. A., Nalamasu, C., Kornblit, A., McNevin, S. and Taylor, G. N., in press.Google Scholar
[21] Yamashita, Y., Kawazu, R., Kawamura, K. and Ohno, S., J. Vac. Sci. and Technol., B3, 314 (1985).Google Scholar
[22] Pierrat, C., Tedesco, S., Vinet, F., Lerme, M. and Zotto, B. Dal', “Proc. 33rd Int'l Symp. on Electron, Ion and Photon Beams”, Monterey, Calif., May 30-June 2, 1989, Abst. L-39.Google Scholar
[23] Thackeray, J. W., Orsula, G. W., Pavelchek, E. K., Bogan, L. E. Jr., Berry, A. K. and Graziano, K. A., Proc. SPIE, 1086, 324 (1989).Google Scholar
[24] Reck, B., Allen, R. D., Twieg, R. J., Willson, C. G., Matuozczak, S., Storer, H. D. H., Ti, N. H. and Frechet, J. M. J., “Proc. Reg. Tech. Conf.”, Mid-Hudson Sect., Soc. Plast. Eng., Ellenville, New York, Oct. 30-Nov. 2, 1988, pp. 6372.Google Scholar
[25] Gupta, S. K. and Audein, C. G., Proc. SPIE, 469, 179 (1984) and references therein.Google Scholar
[26] Stillwagon, L. E., Silverman, P. J. and Taylor, G. N., Proc. Reg. Tech. Conf., Mid-Hudson Sect., Soc. Plast. Eng., Ellenville, New York, Oct. 28-30, 1985, pp. 87103.Google Scholar
[27] Stillwagon, L. E., Komblit, A. and Taylor, G. N., J. Vac. Sci. and Technol., B6, 2229 (1988).Google Scholar
[28] McColgin, W. C., Daley, R. C., Jech, J. Jr., and Brust, T. B., Proc. SPIE, 920, 253 (1988).Google Scholar
[29] Hiraoka, H., Patloch, A. and Wade, C., “Proc. 33rd Int'l Symp. on Electron, Ion and Photon Beams”, Monterey, Calif., May 30-June 2, 1989, Abst. L-34.Google Scholar
[30] Shaw, J., Hatzakis, M., Babieh, E., Paraszczak, J. R., Witman, D. and Stewart, K., “Proc. 33rd Int'l Symp. on Electron, Ion and Photon Beams”, Monterey, Calif., May 30-June 2, 1989, Abst. H-2.Google Scholar
[31] Taylor, G. N., Stillwagon, L. E., Baiocchi, F. A. and Vasile, M. J., Microelectronics Eng., 6, 381 (1987).Google Scholar
[32] Nalamasu, O., Baiocchi, F. A. and Taylor, G. N., “Proc. ACS Divis. Polym. Mat'ls: Sci. and Eng.”, Vol. 60, Amer. Chem. Soc., Wash., DC, 1989, pp. 381384.Google Scholar
[33] Grassi, G. and Weir, N. A., J. Appl. Polym. Sci., 9, 963, 987, 999 (1965).Google Scholar
[34] Geuskens, G., Balyens-Volant, D., Delaernois, G., Lu-Vinh, Q., Piret, W. and David, C., Eur. Polym. Journal, 14, 291, 298 (1978).Google Scholar
[35] Peeling, J. and Clark, D. T., Polym. Degrad. and Stabil., 3, 97 (1981).Google Scholar
[36] Clark, D. T. and Munro, H. M., ibid, 8, 213 (1984); 9, 63, 185 (1984).Google Scholar
[37] Nalamasu, O. and Taylor, G. N., Proc. SPIE, 1086, 186 (1989).Google Scholar
[38] Rothschild, M. and Ehrlich, D. J., J. Vac. Sci. and Technol., B6, 1 (1988).Google Scholar
[39] Hawryluk, A. M. and Seppala, L. G., J. Vac. Sci. and Technol., B6, 2162 (1988).Google Scholar
[40] Wood, O. R. II, Silfvast, W. T. and Jewell, T., ibid., B7, 1989, to be published.Google Scholar