Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T06:57:31.230Z Has data issue: false hasContentIssue false

Imaging Resin-Cast Osteocyte Lacuno-Canalicular System at Bone-Bioactive Glass Interface by Scanning Electron Microscopy

Published online by Cambridge University Press:  26 February 2010

Alejandro A. Gorustovich*
Affiliation:
Research Laboratory, National Atomic Energy Commission (CNEA-Reg. Noroeste) and National Research Council (CONICET), Salta, A4408FTV, Argentina
Get access

Abstract

The morphology of the osteocyte lacuno-canalicular system at the bone-biomaterial implant-interface has not been fully investigated. In this study, the resin-cast scanning electron microscopy technique was used, for the first time, to image the lacuno-canalicular network within neoformed bone around bioactive glass (BG) particles implanted in rat tibia bone marrow. The most salient finding was that the osteocyte canaliculi pass through the calcium-phosphorus layer formed at the bone-BG interface and reach the silica-rich layer of the reacted BG.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarden, E.M., Burger, E.H. & Nijweide, P.J. (1994). Function of osteocytes in bone. J Cell Biochem 55, 287299.CrossRefGoogle ScholarPubMed
Bonewald, L.F. (2005). Generation and function of osteocyte dendritic processes. J Musculoskelet Neuronal Interact 5, 321324.Google ScholarPubMed
Bonewald, L.F. (2008). Osteocytes. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 7th ed., Rosen, C.J. (Ed.), pp. 2227. Washington, D.C.: American Society for Bone and Mineral Research.CrossRefGoogle Scholar
Bonewald, L.F. & Johnson, M.L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone 42, 606615.CrossRefGoogle ScholarPubMed
Bosetti, M. & Cannas, M. (2005). The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 26, 38733879.CrossRefGoogle ScholarPubMed
Curtis, T.A., Ashrafi, S.H. & Weber, D.F. (1985). Canalicular communication in the cortices of human long bones. Anat Rec 212, 336344.CrossRefGoogle ScholarPubMed
Feng, J.Q., Ward, L.M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S.I., Zhang, S., Rios, H., Drezner, M.K., Quarles, L.D., Bonewald, L.F. & White, K.E. (2006). Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38, 13101315.CrossRefGoogle ScholarPubMed
Franz-Odendaal, T.A., Hall, B.K. & Witten, P.E. (2006). Burried alive: How osteoblasts become osteocytes. Dev Dyn 235, 176190.CrossRefGoogle Scholar
Fukumoto, S. & Martin, T.J. (2009). Bone as an endocrine organ. Trends Endocrinol Metab 20, 230236.CrossRefGoogle ScholarPubMed
Gorustovich, A., Porto López, J.M., Guglielmotti, M.B. & Cabrini, R.L. (2006). Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed Mater 1, 100105.CrossRefGoogle ScholarPubMed
Gorustovich, A., Rosenbusch, M. & Guglielmotti, M.B. (2002). Characterization of bone around titanium implants and bioactive glass particles: An experimental study in rats. Int J Oral Maxillofac Implants 17, 644650.Google ScholarPubMed
Gorustovich, A., Sivak, M.G. & Guglielmotti, M.B. (2007). A novel methodology for imaging new bone formation around bioceramic bone substitutes. J Biomed Mater Res A 8, 443445.CrossRefGoogle Scholar
Gorustovich, A., Steimetz, T., Cabrini, R.L. & Porto López, J.M. (2010). Osteoconductivity of strontium-doped bioactive glass particles. A histomorphometric study in rats. J Biomed Mater Res A 92, 232237.CrossRefGoogle ScholarPubMed
Hench, L.L. (1991). Bioceramics: From concept to clinic. J Am Ceram Soc 74, 14871510.CrossRefGoogle Scholar
Hench, L.L., Xynos, I.D. & Polak, J.M. (2004). Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym 15, 543562.CrossRefGoogle ScholarPubMed
Kamioka, H., Honjo, T. & Takano-Yamamoto, T. (2001). A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28, 145149.CrossRefGoogle ScholarPubMed
Kamioka, H., Murshid, S.A., Ishihara, Y., Kajimura, N., Hasegawa, T., Ando, R., Sugawara, Y., Yamashiro, T., Takaoka, A. & Takano-Yamamoto, T. (2009). A method for observing silver-stained osteocytes in situ in 3-μm sections using ultra-high voltage electron microscopy tomography. Microsc Microanal 15, 377383.CrossRefGoogle Scholar
Knothe-Tate, M.L., Adamson, J.R., Tami, A.E. & Bauer, T.W. (2004). The osteocyte. Int J Biomed Cell Biol 36, 18.CrossRefGoogle ScholarPubMed
Knothe-Tate, M.L., Niederer, P. & Knothe, U. (1998). In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22, 107117.CrossRefGoogle Scholar
Kokubo, T. & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 29072915.CrossRefGoogle ScholarPubMed
Lee, K.Y., Kim, H.M., Lim, Y.J., Chun, H.J., Kim, H. & Moon, S.H. (2006). Ceramic bioactivity: Progresses, challenges and perspectives. Biomed Mater 1, 3137.CrossRefGoogle ScholarPubMed
Lu, Y., Xie, Y., Zhang, S., Dusevich, V., Bonewald, L.F. & Feng, J.Q. (2007). DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res 86, 320325.CrossRefGoogle ScholarPubMed
Martin, D.M., Hallsworth, A.S. & Buckley, T. (1978). A method for the study of internal spaces in hard tissue matrices by SEM, with special reference to dentine. J Microsc 112, 345352.CrossRefGoogle Scholar
Noble, B.S. (2008). The osteocyte lineage. Arch Biochem Biophys 473, 106111.CrossRefGoogle ScholarPubMed
Okada, S., Yoshida, S., Ashrafi, S.H. & Schraufnagel, D.E. (2002). The canalicular structure of compact bone in the rat at different ages. Microsc Microanal 8, 104115.CrossRefGoogle ScholarPubMed
Palumbo, C., Ferretti, M. & Marotti, G. (2004). Osteocyte dendrogenesis in static and dynamic bone formation: An ultrastructural study. Anat Rec A Discov Mol Cell Evol Biol 278, 474480.CrossRefGoogle ScholarPubMed
Radin, S., Reilly, G., Bhargave, G., Leboy, P.S. & Ducheyne, P. (2005). Osteogenic effects of bioactive glass on bone marrow stromal cells. J Biomed Mater Res 73A, 2129.CrossRefGoogle Scholar
Reilly, G.C., Knapp, H.F., Stemmer, A., Niederer, P. & Knothe-Tate, M.L. (2001). Investigation of the morphology of the lacunocanalicular system of cortical bone using atomic force microscopy. Ann Biomed Eng 29, 10741081.CrossRefGoogle ScholarPubMed
Schneider, P., Stauber, M., Voide, R., Stampanoni, M., Donahue, L.R. & Müller, R. (2007). Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 22, 15571570.CrossRefGoogle ScholarPubMed
Sugawara, Y., Kamioka, H., Honjo, T., Tezuka, K. & Takano-Yamamoto, T. (2005). Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone 36, 877883.CrossRefGoogle ScholarPubMed
Teti, A. & Zallone, A. (2009). Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44, 1116.CrossRefGoogle ScholarPubMed
Weber, D.F. (1983). An improved technique for producing casts of the internal structure of hard tissues, including some observations on human dentine. Arch Oral Biol 28, 885891.CrossRefGoogle ScholarPubMed
Xie, Y., Ye, L., Zhang, S., Dusevich, V. & Feng, J.Q. (2008). Visualization of osteocytes and mineralization. In A Practical Manual for Musculoskeletal Research, Leung, K.S., Qin, Y.X., Cheung, W.H. & Qin, L. (Eds.), pp. 135145. Singapore: World Scientific Publishing Co.CrossRefGoogle Scholar