Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T00:49:32.667Z Has data issue: false hasContentIssue false

Clustering Analysis in Boron and Phosphorus Implanted (100) Germanium by X-Ray Absorption Spectroscopy

Published online by Cambridge University Press:  01 February 2011

M. Alper Sahiner
Affiliation:
Seton Hall University, Physics Department, South Orange, New Jersey 07079
Parviz Ansari
Affiliation:
Seton Hall University, Physics Department, South Orange, New Jersey 07079
Malcolm S. Carroll
Affiliation:
Agere Systems, Allentown, Pennsylvania 18109
C. A. King
Affiliation:
Agere Systems, Allentown, Pennsylvania 18109
Y. S. Suh
Affiliation:
New Jersey Institute of Technology Newark, New Jersey 07102
R. A. Levy
Affiliation:
New Jersey Institute of Technology Newark, New Jersey 07102
Temel Buyuklimanli
Affiliation:
Evans East, East Windsor, New Jersey 08520
Mark Croft
Affiliation:
Rutgers University, Physics Department, Piscataway, New Jersey 08855
Get access

Abstract

Recently, germanium based semiconductor device technology gained renewed interest due to new developments such as the use of high-k dielectrics for high mobility Ge MOSFETS. However, a systematic local structural investigation of clustering of dopants has been lacking in the literature. In this study, we present a detailed local structural analysis of boron and phosphorus implanted Ge wafers. We have used Ge K-edge x-ray absorption fine-structure spectroscopy (XAFS) in order to probe the local structural modifications around the Ge atom under various implantation parameters and postimplantation annealing treatments. The (100) Ge wafers were implanted and with 11B+ or 31P+ using energies ranging from 20 keV to 320 keV and doses of 5×1013 to 5×1016/cm2. Pieces of the implanted wafers were subjected to thermal annealing at 400°C or 600°C for three hours in high purity nitrogen. Secondary ion mass spectrometry (SIMS) measurements on these wafers were used to correlate the dopant concentration profiles with the local structural information obtained from XAFS. B and P implanted Ge exhibit distinct responses to annealing. For the P implanted Ge samples annealing leads to recrystallization of Ge with increasing annealing temperature, but also an increase in Ge Debye-Waller factors, whereas B implanted Ge samples e×hibit recrystallization at 400°C annealing but more randomness after 600°C annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chui, C. O., Kim, H, Chi, D., Triplett, B. B., McIntyre, P. C., and Saraswat, K. C., Technical Digest International Electron Device Meeting (IEEE, San Francisco, CA, 2002), pp. 437440.Google Scholar
2Eugene Fitzgerald will be published in the Proceedings MRS Spring 2005 (Symposium G).Google Scholar
3 Jones, K. S. and Haller, E. E., J. Appl. Phys. 61, 2469 (1987).Google Scholar
4 Uppal, S., Willoughby, A. F. W., Bonar, J. M., Evans, A. G. R., Cowern, N. E.B., Morris, R., and Dowsett, M., J. Appl. Phys. 90, 4293 (2001).Google Scholar
5 Chui, C. O., Gopalakrishnan, K., Griffin, P. B., Plummer, J. D., Appl. Phys. Lett. 83, 3275 (2003).Google Scholar
6 Sahiner, M. A., Novak, S. W., Woicik, J., Liu, J., Krishnamoorthy, V., IEEE Ion Implantation Technology-2000, Vol 00E×432, 600 (2000).Google Scholar
7 Sahiner, M. A., Novak, S. W., Woicik, J. C., Liu, J., and Krishnamoorty, V., MRS Proceedings, 669, J5.8 (2001).Google Scholar
8 Sahiner, M. A., Novak, S. W., Woicik, J. C., Takamura, Y., Griffin, P. B., Plummer, J. D., MRS Proceedings 717, C3.6 (2002)Google Scholar
9 Allain, J. L., Bourret, A., Regnard, J. R., and Armigliato, A., Appl. Phys. Lett. 61, 264 (1992)Google Scholar
10 Armigliato, A., Romanato, F., Drigo, A., Carnera, A., Brizard, C., Regnard, J. R., and Allain, J.L., Phys. Rev. B 52, 1859 (1995).Google Scholar
11 Ankudinov, A. L., Ravel, B., Rehr, J. J., and Conradson, S. D., Phys. Rev. B 58 7565 (1998).Google Scholar
12 Newville, M., Livins, P., Yacoby, Y., Rehr, J. J., and Stern, E. A., Phys. Rev. B 47, 14126 (1993).Google Scholar
13 Salvador, D. De, Tormen, M., Berti, M., Drigo, A. V., Romanato, F., Boscherini, F., Stangl, J., Zerlauth, S., Bauer, G., Colombo, L., and Mobilio, S., Phys. Rev. B 63, 045314 (2001).Google Scholar
14 Suh, Y. S., Carroll, M. S., Levy, R. A., Bisognin, G., Salvador, D. De, Sahiner, M. A., and King, C. A., submitted to IEEE Transactions on Electron Devices.Google Scholar