Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T09:06:56.000Z Has data issue: false hasContentIssue false

Metallic β-Nb2N Films Epitaxially Grown by MBE on Hexagonal SiC Substrates

Published online by Cambridge University Press:  15 January 2016

D. Scott Katzer*
Affiliation:
U.S. Naval Research Laboratory, Washington, D.C., U.S.A.
Neeraj Nepal
Affiliation:
Sotera Defense Solutions, Herndon, VA, U.S.A.
David J. Meyer
Affiliation:
U.S. Naval Research Laboratory, Washington, D.C., U.S.A.
Brian P. Downey
Affiliation:
U.S. Naval Research Laboratory, Washington, D.C., U.S.A.
Virginia Wheeler
Affiliation:
U.S. Naval Research Laboratory, Washington, D.C., U.S.A.
David F. Storm
Affiliation:
U.S. Naval Research Laboratory, Washington, D.C., U.S.A.
Matthew T. Hardy
Affiliation:
National Research Council Postdoctoral Fellow residing at the U.S. Naval Research Laboratory, Washington, D.C., U.S.A.
Get access

Abstract

RF-plasma MBE was used to epitaxially grow 4 – 100-nm-thick metallic β-Nb2N thin films on hexagonal SiC substrates. When the N/Nb flux ratios are greater than one, the most critical parameter for high-quality β-Nb2N is the substrate temperature. The X-ray diffraction (XRD) of films grown between 775 °C and 850 °C demonstrates pure β-Nb2N phase formation which was also confirmed by X-ray photoelectron spectroscopy and transmission electron microscopy measurements. Using the (0002) and (21$\bar 3$1) XRD peaks of a β-Nb2N film grown at 850 °C reveals a 0.68% lattice mismatch to the 6H-SiC substrate. This suggests that β-Nb2N can be used for high-quality metal/semiconductor heterostructures that cannot be fabricated at present.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sze, S. M. and Gummel, H. K., Solid-State Electron. 9, 751 (1966).CrossRefGoogle Scholar
Pies, W. and Weiss, A., in Key Element: N, ed. Hellwege, K. H. and Hellwege, A. M. (Springer, Heidelberg, 1978) Landolt–Börnstein: Group III Condensed Matter, Vol. 7c1.Google Scholar
Momma, K. and Izumi, F., J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar
Romanus, H., Teichert, G., and Spiess, L., Mater. Sci. Forum 264–268, 437 (1998).Google Scholar
Katzer, D. S., Nepal, N., Meyer, D. J., Downey, B. P., Wheeler, V. D., Storm, D. F., and Hardy, M. T., Appl. Phys. Express 8, 085501 (2015).Google Scholar
Katzer, D. S., Meyer, D. J., Storm, D. F., Nepal, N., and Wheeler, V. D., J. Vac. Sci. Technol. B 32, 02C117 (2014).Google Scholar
Shanabrook, B. V., Waterman, J. R., Davis, J. L., and Wagner, R. J., Appl. Phys. Lett. 61, 2338 (1992).Google Scholar
Heying, B., Averbeck, R., Chen, L. F., Haus, E., Riechert, H., and Speck, J. S., J. Appl. Phys. 88, 1855 (2000).Google Scholar
Farha, A. H., Er, A. O., Ufuktepe, Y., and Elsayed-Ali, H. E., Adv. Mater. Res. 445, 667 (2012).CrossRefGoogle Scholar
Sanjinés, R., Benkahoul, M., Papagno, M., Lévy, F., and Music, D., J. Appl. Phys. 99, 044911 (2006).Google Scholar
Witt, G. R., Thin Solid Films 13, 109 (1972).CrossRefGoogle Scholar
Meyerhoff, R. W., J. Electrochem. Soc. 118 997 (1971).Google Scholar
Darlinski, A. and Halbritter, J., Surf. Interface Anal. 10, 223 (1987).Google Scholar
Benkahoul, M., Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (2005).Google Scholar