Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T20:13:13.483Z Has data issue: false hasContentIssue false

Advanced anode materials for sodium ion batteries: carbodiimides

Published online by Cambridge University Press:  20 March 2017

Aitor Eguia-Barrio
Affiliation:
Dpto. de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain.
Elizabeth Castillo-Martinez*
Affiliation:
CIC Energigune, Parque Tecnológico de Alava, C/Albert Einstein 48, 01510, Miñano, Spain
Xiaohui Liu
Affiliation:
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056, Aachen, Germany
Richard Dronskowski
Affiliation:
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056, Aachen, Germany
Luis Lezama
Affiliation:
Dpto. de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain.
Michel Armand
Affiliation:
CIC Energigune, Parque Tecnológico de Alava, C/Albert Einstein 48, 01510, Miñano, Spain
Teofilo Rojo*
Affiliation:
Dpto. de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain. CIC Energigune, Parque Tecnológico de Alava, C/Albert Einstein 48, 01510, Miñano, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

TMNCN (where TM = Mn2+, Fe2+, Co2+ or Ni2+) have been recently proposed as electrochemically active materials for Na-ion insertion that operate via conversion reaction. Their electrochemical performance for Na-ion batteries is presented here with an emphasis on long-term cycling. With a very low voltage for Na insertion of ∼0.1V vs Na+/Na for MnNCN, the overpotential observed in batteries of MnNCN plays a very important role in their performance, evidencing big differences in the electrochemical performance between materials produced with different nano- and micrometer particle sizes evidenced by SEM images. A more suitable voltage for the conversion reaction accompanied by less overpotential is shown by FeNCN, CoNCN and NiNCN. Despite the lower reversible capacity achieved by FeNCN (450 mAh/g) in comparison with CoNCN and NiNCN in the first cycle; the smallest first-cycle irreversible capacity (220 mAh/g) and the lower voltage plateau (0.3 V vs Na+/Na) make FeNCN a good candidate as an anode material for sodium ion batteries. The voltages of conversion reaction are correlated with the calculated enthalpies of formation suggesting that thermodynamics dominates the observed electrochemical conversion reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Footnotes

#

Current address: Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.

References

REFERENCES

Tarascon, J.-M. and Armand, M. “Issues and challenges facing rechargable lithium batteries” Nature, 2001, 414, 359367.Google Scholar
Palomares, V., Serras, P., Villaluenga, I., Hueso, K. B., Carretero-Gonzalez, J. and Rojo, T. “Na-ion batteries, recent advances and present challenges to become low cost energy storage systems.” Energy Environ. Sci. 2012, 5, 58845901.Google Scholar
Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M. H. and Rojo, T., “Update on Na-based battery materials. A growing research path”, Energy Environ. Sci., 2013, 6, 23122337.Google Scholar
Kim, Y., Park, Y., Choi, A., Choi, N. S., Kim, J., Lee, J., Ryu, J. H., Oh, S. M. and Lee, K. T., “An Amorphous Red Phosphorus/ Carbon Composite as a Promising Anode Material for Sodium Ion Batteries.” Adv. Mater. 2013, 25, 30453049.Google Scholar
Komaba, S., Matsuura, Y., Ishikawa, T., Yabuuchi, N., Murata, W. and Kuze, S., “Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell.” Electrochem.Commun. 2012, 21, 6568.Google Scholar
Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.-M. and Palacin, R., “Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries” Chemistry of Materials, 2011, 23, 41094111.CrossRefGoogle Scholar
Zhao, J., Zhao, L., Chihara, K., Okada, S., Yamaki, J.i., Matsumoto, S., Kuze, S. and Nakane, K., “Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries” J. Power Sources, 2013, 244, 752757.Google Scholar
Zhao, L., Zhao, J. M., Hu, Y. -S., Li, H., Zhou, Z. B., Armand, M. and Chen, L. Q., “Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery” Adv. Energy Mater., 2012, 2, 962965.CrossRefGoogle Scholar
Castillo-Martinez, E., Carretero-Gonzalez, J. and Armand, M.; “Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries” Angew. Chem. Int. Ed. 2014, 54, 54455449.Google Scholar
Lu, Y., Wang, L., Cheng, J. and Goodenough, J.B.; “Prussian blue: a new framework of electrodematerials for sodium batteries” Chem. Commun., 2012, 48, 65446546.Google Scholar
Eguía-Barrio, A., Castillo-Martínez, E., Liu, X., Dronskowski, R., Armand, M. and Rojo, T.; “Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries” J. Mater. Chem. A 2016, 4, 16081611.Google Scholar
Boyko, T. D., Green, R. J., Dronskowski, R. and Moewes, A.; “Electronic Band Gap Reduction in Manganese Carbodiimide: MnNCN”; J. Phys. Chem. C 2013, 117, 12754.Google Scholar
Liu, X., Krott, M., Müller, P., Hu, C., Lueken, H. and Dronskowski, R.; “Synthesis, Crystal Structure, and Properties of MnNCN, the First Carbodiimide of a Magnetic Transition Metal”; Inorg. Chem.; 2005, 44(9), 3001.Google Scholar
Sougrati, M. T., Darwiche, A., Liu, X., Mahmoud, A., Hermann, R. P., Jouen, S., Monconduit, L., Dronskowski, R. and Stievano, L.; “Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties” Angew. Chem. Int. Ed. 2016, 55, 50905095.Google Scholar
Liu, X., Stork, L., Speldrich, M., Lueken, H. and Dronskowski, R.; “FeNCN and Fe(NCNH)2: Synthesis, Structure, and Magnetic Properties of a Nitrogen-Based Pseudo-oxide and -hydroxide of Divalent Iron”; Chem. Eur. J. 2009, 15, 1558.CrossRefGoogle Scholar
Krott, M., Liu, X., Fokwa, B. P. T., Speldrich, M., Lueken, H. and Dronskowski, R.; “Synthesis, Crystal-Structure Determination and Magnetic Properties of Two New Transition-Metal Carbodiimides: CoNCN and NiNCN”; Inorg. Chem. 2007, 46, 2204.CrossRefGoogle Scholar
Krott, M., Houben, A., Müller, P., Schweika, W. and Dronskowski, R.; “Determination of the magnetic structure of manganese carbodiimide with diffraction experiments using polarized neutrons “; Phys. Rev. B; 2009, 80, 024117.CrossRefGoogle Scholar
Ahrens, L. H.; “The use of ionization potentials Part 1. Ionic radii of the elements”; Geochim. Cosmochim. Acta, 1952, 2(3), 155.Google Scholar
Milke, B., Wall, C., Metzke, S., Clavel, G., Fichtner, M. and Giordano, C.; “A simple synthesis of MnN0.43@C nanocomposite: characterization and application as battery material”; J. Nanopart. Res. 2014, 16, 2795.Google Scholar
Cui, J., Qing, C., Zhang, Q., Su, C., Wang, X., Yang, B. and Huang, X.; “Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites” Ionics 2014, 20, 23.Google Scholar
Jache, B. and Adelhelm, P., “Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena”; Angew. Chem. Int. Ed., 2014, 53(38), 10169.Google Scholar
Jache, B., Binder, J. O., Abe, T. and Adelhelm, P.; “A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries”; Phys. Chem. Chem. Phys., 2016, 18, 14299.Google Scholar
Launay, M. and Dronskowski, R., “A Theoretical Study on the Existence and Structures of Some Hypothetical First-Row Transition-Metal M(NCN) compounds” Z. Naturforsch. 2005, 60b, 437.Google Scholar
Blachnik, R.: Elemente, anorganische Verbindungen und Materialen, Minerale; J. D’Ans, E. Lax: Taschenbuch für Chemiker und Physiker; Springer-Verlag, Berlin, Heidelberg, New York (1998).Google Scholar