Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T03:49:36.230Z Has data issue: false hasContentIssue false

Microwave dielectric properties of low loss and highly tunable Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics

Published online by Cambridge University Press:  12 January 2012

Mingwei Zhang
Affiliation:
Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China
Jiwei Zhai*
Affiliation:
Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China
Bo Shen
Affiliation:
Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China
Xi Yao
Affiliation:
Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China
*
a)Address all correspondence to this author. e-mail: apzhai@tongji.edu.cn
Get access

Abstract

This article reports on microstructure and dielectric properties of Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics. Dielectric peaks of the Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics were markedly suppressed, broadened, and shifted to low temperature with increasing content of W. The limit of W incorporating into the barium strontium titanate (BST) lattice was y = 0.02. Two second phases (BaWO4 and Ba2Ti5O12) were formed above the solid solution limit of W in BST. The doping mechanism represents a new approach to develop microwave tunable materials. Dielectric properties of the Ba0.5Sr0.5Ti1−3y/2WyO3 ceramics could be optimized by the content of W. The sample with y = 0.05 had ε′ of 431, quality factor of 365 (at 2.111 GHz), and tunability of 11.5%, which makes a potential candidate for tunable microwave device applications in the wireless communication.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fiedziuszko, S.J., Hunter, I.C., Itoh, T., Kobayashi, Y., Nishikawa, T., Stitzer, S.N., and Wakino, K.: Dielectric materials, devices and circuits. IEEE Trans. Microwave Theory Tech. 50, 706 (2002).CrossRefGoogle Scholar
2.Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., Venkatesh, J., and Setter, N.: Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5 (2003).Google Scholar
3.Feteira, A., Sinclair, D.C., Reaney, I.M., Somiya, Y., and Lanagan, M.T.: BaTiO3-based ceramics for tunable microwave applications. J. Am. Ceram. Soc. 87(6), 1082 (2004).CrossRefGoogle Scholar
4.Irvin, P., Levy, J., Guo, R., and Bhalla, A.: Three-dimensional polarization imaging of (Ba,Sr)TiO3:MgO composite. Appl. Phys. Lett. 86(4), 042903 (2005).Google Scholar
5.Xiang, F., Wang, H., Li, K.C., Chen, Y.H., Zhang, M.H., Shen, Z.Y., and Yao, X.: Dielectric tunability of Ba0.6Sr0.4TiO3/poly(methyl methocrylate) composites in 1-3-type structure. Appl. Phys. Lett. 91(19), 192907 (2007).CrossRefGoogle Scholar
6.Zhou, K., Boggs, S.A., Ramprasad, R., Aindow, M., Erkey, C., and Alpay, S.P.: Dielectric response and tunability of a dielectric-paraelectric composite. Appl. Phys. Lett. 93(10), 102908 (2008).CrossRefGoogle Scholar
7.Zhang, J.J., Zhai, J.W., Zhang, M.W., Qi, P., Yu, X., and Yao, X.: Structure–dielectric properties relationship in Mg–Mn co-doped Ba0.4Sr0.6TiO3/MgAl2O4 tunable microwave composite ceramics. J. Phys. D: Appl. Phys. 42(7), 075414 (2009).CrossRefGoogle Scholar
8.Chung, U.C., Elissalde, C., Maglione, M., Estournes, C., Pate, M., and Ganne, J.P.: Low-losses, highly tunable Ba0.6Sr0.4TiO3/MgO composite. Appl. Phys. Lett. 92(4), 042902 (2008).Google Scholar
9.Chang, W. and Sengupta, L.: MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications. J. Appl. Phys. 92(7), 3941 (2002).CrossRefGoogle Scholar
10.Wang, X.H., Lu, W.Z., Liu, J., Zhou, Y.L., and Zhou, D.X.: Effects of La2O3 additions on properties of Ba0.6Sr0.4TiO3-MgO ceramics for phase shifter applications. J. Eur. Ceram. Soc. 26(10–11), 1981 (2006).CrossRefGoogle Scholar
11.Varma, M.R. and Sebastian, M.T.: Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 27, 2827 (2007).CrossRefGoogle Scholar
12.Wu, Y., Limmer, S.J., Chou, T.P., and Nguyen, C.: Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. J. Mater. Sci. Lett. 21, 947 (2002).CrossRefGoogle Scholar
13.Zong, X., Yang, Z., Li, H., and Yuan, M.: Effects of WO3 addition on the structure and electrical properties of Pb3O4 modified PZT-PFW-PMN piezoelectric ceramics. Mater. Res. Bull. 41, 1447 (2006).CrossRefGoogle Scholar
14.Coondoo, I., Jha, A.K., Aggarwal, S.K., and Soni, N.C.: Enhancement of dielectric characteristics in donor doped Aurivillius SrBi2Ta2O9 ferroelectric ceramics. J. Eur. Ceram. Soc. 27, 253 (2007).CrossRefGoogle Scholar
15.Devi, S. and Jha, A.K.: Phase transitions and electrical characteristics of tungsten substituted barium titanate. Phys. B 404, 4290 (2009).CrossRefGoogle Scholar
16.Liang, C.S. and Wu, J.M.: Electrical properties of W-doped (Ba0.5Sr0.5)TiO3 thin films. J. Cryst. Growth 173, 274 (2005).Google Scholar
17.Zhang, J.J., Zhai, J.W., and Yao, X.: Dielectric tunable properties of low-loss Ba0.4Sr0.6Ti1-yMnyO3 ceramics. Scr. Mater. 61, 764 (2009).CrossRefGoogle Scholar
18.Yang, K., Gao, Z.F., and Bian, J.J.: Microwave dielectric properties of tungstate ceramics. J. China Ceram. Soc. 34, 251 (2006).Google Scholar
19.Hakki, B.W. and Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8, 402 (1960).Google Scholar
20.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).Google Scholar
21.Chan, H.M., Harmer, M.P., and Smyth, D.M.: Compensating defects in highly donor doped BaTiO3. J. Am. Ceram. Soc. 69, 507 (1986).Google Scholar
22.Chiang, Y.M., Birnie, D.P., and Kingery, W.D.: Physical Ceramics (John Wiley and Sons, New York, 1997).Google Scholar
23.Xiang, P.H., Dong, X.L., Feng, C.D., Zhong, N., and Guo, J.K.: Sintering behavior, mechanical and electrical properties of lead zirconate titanate/NiO composites from coated powders. Ceram. Int. 30, 765 (2004).Google Scholar
24.Chen, Y., Dong, X.L., Liang, R.H., Li, J.T., and Wang, Y.L.: Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics. J. Appl. Phys. 98(6), 064107 (2005).Google Scholar
25.Yu, H. and Ye, Z.G.: Dielectric properties and relaxor behavior of a new (1−x)BaTiO3xBiAlO3 solid solution. J. Appl. Phys. 103, 034114 (2008).CrossRefGoogle Scholar
26.Li, Z.C., Zhang, H., Zou, X.D., and Bergman, B.: Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase. Mater. Sci. Eng., B 116, 34 (2005).CrossRefGoogle Scholar
27.Zhang, J.J., Zhai, J.W., Jiang, H.T., and Yao, X.: Raman and dielectric study of Ba0.4Sr0.6TiO3-MgAl2O4 tunable microwave composite. J. Appl. Phys. 104, 084102 (2008).Google Scholar
28.Kong, L.B., Li, S., Zhang, T.S., Zhai, J.W., Boey, F.Y.C., and Ma, J.: Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 55, 840 (2010).Google Scholar