Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T14:09:05.975Z Has data issue: false hasContentIssue false

Slow Dielectric Relaxation of Supercooled Liqutos Investigated by Nonresonant Spectral Hole Burning

Published online by Cambridge University Press:  10 February 2011

R. V. Chamberlin
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287–1504
B. Schiener
Affiliation:
Institut für Festkörperphysik, Technische Hochschule, D-64289 Darmstadt, Germany
R. Böhmer
Affiliation:
Institut für Physikalische Chemie, Johannes Gutenberg Universität, D-55099 Mainz, Germany
Get access

Abstract

When supercooled propylene carbonate and glycerol are subjected to a large-amplitude, low-frequency electric field, a spectral hole develops in their dielectric relaxation that is significantly narrower than their bulk response. This observation of nonresonant spectral hole burning establishes that the non-Debye response is due to a distribution of relaxation times. Refilling of the spectral hole occurs abruptly, indicative of a single recovery rate that corresponds to the peak in the distribution. The general shape of the spectral hole is preserved during recovery, indicating negligible interaction between the degrees of freedom that responded to the field. All relevant features in the behavior can be characterized by a model for independently relaxing domains that are selectively heated by the large oscillation, and which recover via connection to a common thermal bath, with no direct coupling between the domains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See Scher, H., Shlesinger, M.F., Bendler, J.T., Phys. Today 44 (1), 2634 (1991).Google Scholar
2. See e.g., Relaxations in Complex Systems, edited by Ngai, K.L. and Wright, G.B., J. Non-Cryst. Solids 172174 (1994).Google Scholar
3. Cole, K.S. and Cole, R.H., J. Chem. Phys. 9, 341 (1941).Google Scholar
4. Williams, G., Cook, M., Hams, P.J., J. Chem. Soc. Faraday Trans. 2 68, 1045 (1972).Google Scholar
5. Jonscher, A.K., Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1982).Google Scholar
6. Richert, R., Chem. Phys. Lett. 216, 223 (1993).Google Scholar
7. Donth, E., J. Non-Cryst. Solids 53, 325 (1982).Google Scholar
8. Moynihan, C.T. and Schroeder, J., J. Non-Cryst. Solids 160, 52 (1993).Google Scholar
9. Schmidt-Rohr, K. and Spiess, H.W., Phys. Rev. Lett. 66, 3020 (1991);Google Scholar
Heuer, A., Wilhelm, M., Zimmermann, H., Spiess, H.W. Phys. Rev. Lett. 75, 2851 (1995).Google Scholar
10. Cicerone, M.T. and Ediger, M.D., J. Chem. Phys. 103, 5684 (1995).Google Scholar
11. Schiener, B., Böhmer, R., Loidl, A., Chamberlin, R. V., Science 274, 752 (1996).Google Scholar
12. Bloembergen, N., Purcell, E.M., Pound, R. V., Phys. Rev. 73, 679 (1948).Google Scholar
13. Kuhs, P.L. and Conradi, M.S., J. Chem. Phys. 77, 1771 (1982).Google Scholar
14. Böhmer, R., Schiener, B., Hemberger, J. and Chamberlin, R. V., Z. Phys. B 99, 91 (1995);Google Scholar
Böhmer, R., Schiener, B., Hemberger, J. and Chamberlin, R. V., Z. Phys. B 99, p. 624 (1996).Google Scholar
15. See e.g. Furukawa, T. and Matsumoto, K., Jpn. J. Appl. Phys. 31, 840 (1992).Google Scholar
16. Angeli, C.A., Boehm, L., Oguni, M., Smith, D.L., J. Mol. Liq. 56, 275 (1993).Google Scholar
17. Dixon, P.K. and Nagel, S.R., Phys. Rev. Lett. 61, 341 (1988).Google Scholar
18. Fujimori, H. and Oguni, M., J. Non-Cryst. Solids 172–174, 601 (1994).Google Scholar
19. Hodge, I.M., Science 267, 1945 (1995).Google Scholar
20. Lindsey, C.P. and Patterson, G.D., J. Chem. Phys. 73, 3348 (1980).Google Scholar
21. Böhmer, R., Hinze, G., Diezemann, G., Geil, B., and Sillescu, H., Europhys. Lett. 36, 55 (1996).Google Scholar
22. Hodge, I.M., J. Non-Cryst. Solids 169, 211 (1994).Google Scholar
23. Adams, G. and Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).Google Scholar
24. Macdonald, J.R., J. Appl. Phys. 62, R51 (1987).Google Scholar
25. Chamberlin, R.V. and Kingsbury, D.W., J. Non-Cryst. Solids 172–174, 318 (1994).Google Scholar
26. Andersen, J.E. and Ullman, R., J. Chem. Phys. 47, 2178 (1967).Google Scholar
27. Phillips, J.C., Rep. Prog. Phys. 59, 1133 (1996).Google Scholar
28. Böhmer, R., Ngai, K.L., Angeli, C.A. and Plazek, D.J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
29. Electron Paramagnetic Resonance of Transition Ions, Abragam, A. and Bleaney, B., Oxford University Press, New York (1970), pgs. 574583.Google Scholar
30. Faughnan, B.W. and Strandberg, M.W.P., J. Phys. Chem. Solids 19, 155 (1961).Google Scholar
31. Angeli, C.A., J. Am. Ceram. Soc. 51, 117 (1968).Google Scholar