Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T12:18:54.369Z Has data issue: false hasContentIssue false

Nanotribology of clean and modified gold surfaces

Published online by Cambridge University Press:  07 May 2013

Roland Bennewitz*
Affiliation:
INM – Leibniz-Institute for New Materials and Physics Department, 66123 Saarbrücken, Germany
Florian Hausen
Affiliation:
INM – Leibniz-Institute for New Materials and Physics Department, 66123 Saarbrücken, Germany
Nitya Nand Gosvami
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: roland.bennewitz@inm-gmbh.de
Get access

Abstract

Gold surfaces exhibit most interesting frictional properties on the nanometer scale. They can be studied in detail by means of friction force microscopy. Atomic-scale variations of the lateral force allow investigation of microscopic mechanisms of sliding. Friction force microscopy even reveals surface reconstruction of the gold surface as a modulation of the lateral force signal. Experiments indicate that the mobility of surface atoms at room temperature and plastic deformation mechanisms give rise to neck formation between gold and microscopic asperities in sliding contact. The frictional properties of gold surfaces change dramatically at temperatures below 150 K, where the surface diffusion is greatly reduced. Insight into the lubrication properties of self-assembled monolayers is provided by molecular-scale modulations of frictional forces. Molecular-scale maps of the friction force also allow identification of the relevant surface structure in experiments on electrochemically modified gold surfaces. Variation of the electrochemical potential is a means to reversibly switch between low and high friction states on gold surfaces.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kitagawa, K.: On the development of the (001) texture of gold leaf fabricated by hammering. J. Mater. Sci. 23(8), 2810 (1988).CrossRefGoogle Scholar
Bowden, F.P. and Tabor, D.: The Friction and Lubrication of Solids (Clarendon Press, Oxford, UK, 2008).Google Scholar
Müser, M.: Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84, 125419 (2011).CrossRefGoogle Scholar
Costakramer, J.L., Garcia, N., Garciamochales, P., and Serena, P.A.: Nanowire formation in macroscopic metallic contacts - quantum-mechanical conductance tapping a table top. Surf. Sci. 342(1–3), L1144 (1995).CrossRefGoogle Scholar
Sabater, C., Untiedt, C., Palacios, J.J., and Caturla, M.J.: Mechanical annealing of metallic electrodes at the atomic scale. Phys. Rev. Lett. 108(20), 205502 (2012).CrossRefGoogle ScholarPubMed
Rubio, G., Agrait, N., and Vieira, S.: Atomic-sized metallic contacts: Mechanical properties and electronic transport. Phys. Rev. Lett. 76(13), 2302 (1996).CrossRefGoogle ScholarPubMed
Ohnishi, H., Kondo, Y., and Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395(6704), 780 (1998).CrossRefGoogle Scholar
Lu, Y., Huang, J.Y., Wang, C., Sun, S.H., and Lou, J.: Cold welding of ultrathin gold nanowires Nat. Nanotechnol. 5(3), 218 (2010).CrossRefGoogle ScholarPubMed
Landman, U., Luedtke, W.D., Burnham, N.A., and Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248(4954), 454 (1990).CrossRefGoogle ScholarPubMed
Sinnott, S.B. and Brenner, D.W.: Three decades of many-body potentials in materials research. MRS Bull. 37(05), 469 (2012).CrossRefGoogle Scholar
Song, J. and Srolovitz, D.J.: Mechanism for material transfer in asperity contact. J. Appl. Phys. 104(12), 124312 (2008).CrossRefGoogle Scholar
Bennewitz, R., Broermann, K., Egberts, P., Gosvami, N.N., Hausen, F., and Held, C.: Nanotribology - fundamental studies of friction and plasticity. Adv. Eng. Mater. 12(5), 362 (2010).CrossRefGoogle Scholar
Szlufarska, I., Chandross, M., and Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41(12), 123001 (2008).CrossRefGoogle Scholar
Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., and Landman, U.: Frictional forces and Amontons' Law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410 (2004).CrossRefGoogle Scholar
Polaczyk, C., Schneider, T., Schofer, J., and Santner, E.: Microtribological behavior of Au(001) studied by AFM/FFM. Surf. Sci. 402(1–3), 454 (1998).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
Gosvami, N.N., Filleter, T., Egberts, P., and Bennewitz, R.: Microscopic friction studies on metal surfaces. Tribol. Lett. 39(1), 19 (2010).CrossRefGoogle Scholar
Socoliuc, A., Bennewitz, R., Gnecco, E., and Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004).CrossRefGoogle ScholarPubMed
Jaklevic, R.C. and Elie, L.: Scanning-tunneling-microscope observations of surface-diffusion on an atomic scale - Au on Au(111). Phys. Rev. Lett. 60(2), 120 (1988).CrossRefGoogle Scholar
Thomas, R.C., Houston, J.E., Michalske, T.A., and Crooks, R.M.: The mechanical response of gold substrates passivated by self-assembled monolayer films. Science 259(5103), 1883 (1993).CrossRefGoogle Scholar
Merkle, A.P. and Marks, L.D.: Liquid-like tribology of gold studied by in situ TEM. Wear 265(11–12), 1864 (2008).CrossRefGoogle Scholar
Gosvami, N.N., Feldmann, M., Peguiron, J., Moseler, M., Schirmeisen, A., and Bennewitz, R.: Ageing of a microscopic sliding gold contact at low temperatures. Phys. Rev. Lett. 107(14), 144303 (2011).CrossRefGoogle ScholarPubMed
Antczak, G. and Ehrlich, G.: Surface Diffusion (Cambridge University Press, Cambridge, UK, 2010).CrossRefGoogle Scholar
Sommerfeld, D.A., Cambron, R.T., and Beebe, T.P.: Topographic and diffusion measurements of gold and platinum surfaces by scanning tunneling microscopy. J. Phys. Chem. 94(26), 8926 (1990).CrossRefGoogle Scholar
Bracco, G. and Cavanna, D.: Decay of nanoripples on Au(111) studied by He atom scattering. Phys. Rev. B 76(3), 033411 (2007).CrossRefGoogle Scholar
Li, Q., Dong, Y., Perez, D., Martini, A., and Carpick, R.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106(12), 126101 (2011).CrossRefGoogle ScholarPubMed
Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., and Guntherodt, H.J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60(16), R11301 (1999).CrossRefGoogle Scholar
Jarvis, S.P., Lantz, M.A., Ogiso, H., Tokumoto, H., and Durig, U.: Conduction and mechanical properties of atomic scale gold contacts. Appl. Phys. Lett. 75(20), 3132 (1999).CrossRefGoogle Scholar
Enachescu, M., Carpick, R.W., Ogletree, D.F., and Salmeron, M.: The role of contaminants in the variation of adhesion, friction, and electrical conduction properties of carbide-coated scanning probe tips and Pt(111) in ultrahigh vacuum. J. Appl. Phys. 95(12), 7694 (2004).CrossRefGoogle Scholar
Chen, L., Lee, H., Guo, Z.J., McGruer, N.E., Gilbert, K.W., Mall, S., Leedy, K.D., and Adams, G.G.: Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J. Appl. Phys. 102(7), 074910 (2007).CrossRefGoogle Scholar
Gosvami, N.N., Sinha, S.K., Hofbauer, W., and O'Shea, S.J.: Solvation and squeeze out of hexadecane on graphite. J. Chem. Phys. 126(21), 214708 (2007).CrossRefGoogle ScholarPubMed
Gosvami, N.N., Sinha, S.K., and O'Shea, S.J.: Squeeze-out of branched alkanes on graphite. Phys. Rev. Lett. 100(7), 076101 (2008).CrossRefGoogle ScholarPubMed
Lantz, M.A., O'Shea, S.J., and Welland, M.E.: Characterization of tips for conducting atomic force microscopy in ultrahigh vacuum. Rev. Sci. Instrum. 69(4), 1757 (1998).CrossRefGoogle Scholar
Bhaskaran, H., Sebastian, A., and Despont, M.: Nanoscale PtSi tips for conducting probe technologies. IEEE Trans. Nanotechnol. 8(1), 128 (2009).CrossRefGoogle Scholar
Koelmans, W.W., Sebastian, A., Abelmann, L., Despont, M., and Pozidis, H.: Force modulation for enhanced nanoscale electrical sensing. Nanotechnology 22(35), 355706 (2011).CrossRefGoogle ScholarPubMed
Ulman, A., Eilers, J.E., and Tillman, N.: Packing and molecular orientation of alkanthiol monolayers on gold surfaces. Langmuir 5(5), 1147 (1989).CrossRefGoogle Scholar
Maboudian, R. and Carraro, C.: Surface chemistry and tribology of MEMS. Annu. Rev. Phys. Chem. 55, 35 (2004).CrossRefGoogle ScholarPubMed
Gosvami, N.N., Egberts, P., and Bennewitz, R.: Molecular order and disorder in the frictional response of alkanethiol self-assembled monolayers. J. Phys. Chem. A 115(25), 6942 (2011).CrossRefGoogle ScholarPubMed
Lio, A., Charych, D.H., and Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101(19), 3800 (1997).CrossRefGoogle Scholar
Zuo, L., Xiong, Y., Xie, X.C., and Xiao, X.D.: Enhanced lubricity in mixed alkanethiol monolayers. J. Phys. Chem. B 109(48), 22971 (2005).CrossRefGoogle ScholarPubMed
Mikulski, P.T., Herman, L.A., and Harrison, J.A.: Odd and even model self-assembled monolayers: Links between friction and structure. Langmuir 21(26), 12197 (2005).CrossRefGoogle ScholarPubMed
Ramin, L. and Jabbarzadeh, A.: Effect of load on structural and frictional properties of alkanethiol self-assembled mono layers on Gold: Some odd-even effects. Langmuir 28(9), 4102 (2012).CrossRefGoogle Scholar
Park, B., Lorenz, C.D., Chandross, M., Stevens, M.J., Grest, G.S., and Borodin, O.A.: Frictional dynamics of fluorine-terminated alkanethiol self-assembled monolayers. Langmuir 20(23), 10007 (2004).CrossRefGoogle ScholarPubMed
Kiely, J.D., Houston, J.E., Mulder, J.A., Hsung, R.P., and Zhu, X.Y.: Adhesion, deformation and friction for self-assembled monolayers on Au and Si surfaces. Tribol. Lett. 7(2–3), 103 (1999).CrossRefGoogle Scholar
Hausen, F., Gosvami, N.N., and Bennewitz, R.: Anion adsorption and atomic friction on Au(111). Electrochim. Acta 56(28), 10694 (2011).CrossRefGoogle Scholar
Hausen, F., Zimmet, J.A., and Bennewitz, R.: Surface structures and frictional properties of Au(100) in an electrochemical environment. Surf. Sci. 607, 20 (2013).CrossRefGoogle Scholar
Labuda, A., Paul, W., Pietrobon, B., Lennox, R.B., Grutter, P.H., and Bennewitz, R.: High-resolution friction force microscopy under electrochemical control. Rev. Sci. Instrum. 81(8), 083701 (2010).CrossRefGoogle ScholarPubMed
Labuda, A., Hausen, F., Gosvami, N.N., Grutter, P.H., Lennox, R.B., and Bennewitz, R.: Switching atomic friction by electrochemical oxidation. Langmuir 27(6), 2561 (2011).CrossRefGoogle ScholarPubMed
Toney, M.F., Howard, J.N., Richer, J., Borges, G.L., Gordon, J.G., and Melroy, O.R.: Electrochemical deposition of copper on a gold electrode in sulfuric acid - resolution of the interfacial structure. Phys. Rev. Lett. 75(24), 4472 (1995).CrossRefGoogle Scholar
Argibay, N. and Sawyer, W.G.: Frictional voltammetry with copper. Tribol. Lett. 46(3), 337 (2012).CrossRefGoogle Scholar
Alonso, C., Salvarezza, R.C., Vara, J.M., Arvia, A.J., Vazquez, L., Bartolome, A., and Baro, A.M.: The evaluation of surface-diffusion coefficients of gold and platinum atoms at electrochemical interfaces from combined STM-SEM imaging and electrochemical techniques. J. Electrochem. Soc. 137(7), 2161 (1990).CrossRefGoogle Scholar
Sweeney, J., Hausen, F., Hayes, R., Webber, G.B., Endres, F., Rutland, M.W., Bennewitz, R., and Atkin, R.: Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 109(15), 155502 (2012).CrossRefGoogle Scholar
Voevodin, A.A. and Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65(5), 741 (2005).Google Scholar
Stoyanov, P., Gupta, S., Chromik, R.R., and Lince, J.R.: Microtribological performance of Au-MoS2 nanocomposite and Au/MoS2 bilayer coatings. Tribol. Int. 52, 144 (2012).CrossRefGoogle Scholar
Wang, L., Liu, Y.H., Si, W.J., Feng, H.L., Tao, Y.Q., and Ma, Z.Z.: Friction and wear behaviors of dental ceramics against natural tooth enamel. J. Eur. Ceram. Soc. 32(11), 2599 (2012).CrossRefGoogle Scholar