Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T12:44:12.136Z Has data issue: false hasContentIssue false

Alternating direction implicit type preconditioners for the steady state inhomogeneous Vlasov equation

Published online by Cambridge University Press:  20 February 2017

Markus Gasteiger*
Affiliation:
University of Innsbruck, Department of Mathematics, Technikerstr. 13, A-6020 Innsbruck, Austria
Lukas Einkemmer
Affiliation:
University of Innsbruck, Department of Mathematics, Technikerstr. 13, A-6020 Innsbruck, Austria
Alexander Ostermann
Affiliation:
University of Innsbruck, Department of Mathematics, Technikerstr. 13, A-6020 Innsbruck, Austria
David Tskhakaya
Affiliation:
Technical University of Vienna, Institute of Applied Physics, Fusion@ÖAW, Wiedner Hauptstr. 8-10/E134, A-1040 Wien, Austria
*
Email address for correspondence: markus.gasteiger@uibk.ac.at

Abstract

The purpose of the current work is to find numerical solutions of the steady state inhomogeneous Vlasov equation. This problem has a wide range of applications in the kinetic simulation of non-thermal plasmas. However, the direct application of either time stepping schemes or iterative methods (such as Krylov-based methods such as the generalized minimal residual method (GMRES) or relaxation schemes) is computationally expensive. In the former case the slowest time scale in the system forces us to perform a long time integration while in the latter case a large number of iterations is required. In this paper we propose a preconditioner based on an alternating direction implicit type splitting method. This preconditioner is then combined with both GMRES and Richardson iteration. The resulting numerical schemes scale almost ideally (i.e. the computational effort is proportional to the number of grid points). Numerical simulations conducted show that this can result in a speed-up of close to two orders of magnitude (even for intermediate grid sizes) with respect to the unpreconditioned case. In addition, we discuss the characteristics of these numerical methods and show the results for a number of numerical simulations.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. F., Samtaney, R. & Brandt, A. 2010 Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics. J. Comput. Phys. 229 (18), 62086219.Google Scholar
Arber, T. D. & Vann, R. G. L. 2002 A critical comparison of Eulerian-grid-based Vlasov solvers. J. Comput. Phys. 180 (1), 339357.CrossRefGoogle Scholar
Batishchev, O. V., Xu, X. Q., Byers, J. A., Cohen, R. H., Krasheninnikov, S. I., Rognlien, T. D. & Sigmar, D. J. 1996 Kinetic effects on particle and heat fluxes in detached plasmas. Phys. Plasmas 3 (9), 33863396.Google Scholar
Briggs, W. L., Henson, V. E. & McCormick, S. F. 2000 A Multigrid Tutorial. SIAM.Google Scholar
Casas, F., Crouseilles, N., Faou, E. & Mehrenberger, M. 2017 High-order Hamiltonian splitting for the Vlasov–Poisson equations. Numer. Math. 135, 769801.CrossRefGoogle Scholar
Chacón, L. 2008 An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamics. Phys. Plasmas 15 (5), 056103.Google Scholar
Chacón, L. & Knoll, D. A. 2003 A 2D high- $\unicode[STIX]{x1D6FD}$ Hall MHD implicit nonlinear solver. J. Comput. Phys. 188 (2), 573592.Google Scholar
Cheng, C. Z. & Knorr, G. 1976 Integration of the Vlasov equation in configuration space. J. Comput. Phys. 22 (3), 330351.CrossRefGoogle Scholar
Chodura, R. 1992 Kinetic effects in the scrape off layer. Contrib. Plasma Phys. 32, 219230.CrossRefGoogle Scholar
Christlieb, A.2015 Method of lines transpose an implicit Vlasov Maxwell solver for plasmas. Tech. Rep. ADA627056, DTIC Document.Google Scholar
Crouseilles, N., Einkemmer, L. & Faou, E. 2015 Hamiltonian splitting for the Vlasov–Maxwell equations. J. Comput. Phys. 283, 224240.CrossRefGoogle Scholar
Crouseilles, N., Einkemmer, L. & Faou, E. 2016 An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit. Comput. Phys. Commun. 209, 1326.Google Scholar
Crouseilles, N., Mehrenberger, M. & Sonnendrücker, E. 2010 Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229 (6), 19271953.Google Scholar
Einkemmer, L.2016 Structure preserving numerical methods for the Vlasov equation. Preprint, arXiv:1601.02280.Google Scholar
Einkemmer, L. & Ostermann, A. 2014a Convergence analysis of a discontinuous Galerkin/Strang splitting approximation for the Vlasov–Poisson equations. SIAM J. Numer. Anal. 52 (2), 757778.Google Scholar
Einkemmer, L. & Ostermann, A. 2014b Convergence analysis of Strang splitting for Vlasov-type equations. SIAM J. Numer. Anal. 52 (1), 140155.Google Scholar
Filbet, F., Sonnendrücker, E. & Bertrand, P. 2001 Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (1), 166187.CrossRefGoogle Scholar
Gasteiger, M. & Tskhakaya, D. 2014 On the electron distribution function in the edge plasma. Contrib. Plasma Phys. 54, 503507.CrossRefGoogle Scholar
Hujeirat, A. 1998 IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems. Mon. Not. R. Astron. Soc. 298 (1), 310320.Google Scholar
Janev, R. K., Reiter, D. & Samm, U.2004 Collision processes in low-temperature hydrogen plasmas. Tech. Rep. 4105, Zentralbibliothek, Forschungszentrum Jülich.Google Scholar
Karney, C. F. F. 1986 Fokker–Planck and quasilinear codes. Comput. Phys. Rep. 4 (3), 183244.Google Scholar
Klimas, A. J. & Farrell, W. M. 1994 A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110 (1), 150163.Google Scholar
Landreman, M. & Ernst, D. R. 2012 Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal. Plasma Phys. Control. Fusion 54 (11), 115006.Google Scholar
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Wiley.CrossRefGoogle Scholar
Lindemuth, I. & Killeen, J. 1973 Alternating direction implicit techniques for two-dimensional magnetohydrodynamic calculations. J. Comput. Phys. 13 (2), 181208.Google Scholar
Müller, E. H & Scheichl, R. 2014 Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Q. J. R. Meteorol. Soc. 140 (685), 26082624.Google Scholar
Qiu, J.-M. & Christlieb, A. 2010 A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229 (4), 11301149.CrossRefGoogle Scholar
Qiu, J.-M. & Shu, C.-W. 2011 Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230 (23), 83868409.CrossRefGoogle Scholar
Reynolds, D. R., Samtaney, R. & Tiedeman, H. C. 2012 A fully implicit Newton–Krylov–Schwarz method for tokamak magnetohydrodynamics: Jacobian construction and preconditioner formulation. Comput. Sci. Disc. 5 (1), 014003.Google Scholar
Reynolds, D. R., Samtaney, R. & Woodward, C. S. 2010 Operator-based preconditioning of stiff hyperbolic systems. SIAM J. Sci. Comput. 32 (1), 150170.Google Scholar
Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L. 1957 Fokker–Planck equation for an inverse-square force. Phys. Rev. 107, 16.Google Scholar
Rossmanith, J. A. & Seal, D. C. 2011 A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230 (16), 62036232.Google Scholar
Saad, Y. 2003 Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM.CrossRefGoogle Scholar
Sauter, O., Harvey, R. W. & Hinton, F. L. 1994 A 3-D Fokker–Planck code for studying parallel transport in tokamak geometry with arbitrary collisionalities and application to neoclassical resistivity. Contrib. Plasma Phys. 34 (2–3), 169174.CrossRefGoogle Scholar
Schnack, D. & Killeen, J. 1980 Nonlinear, two-dimensional magnetohydrodynamic calculations. J. Comput. Phys. 35 (1), 110145.CrossRefGoogle Scholar
Sgura, I., Bozzini, B. & Lacitignola, D. 2012 Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Maths 236, 41324147.Google Scholar
Shadid, J. N., Pawlowski, R. P., Banks, J. W., Chacónc, L., Lin, P. T. & Tuminaro, R. S. 2010 Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys. 229 (20), 76497671.Google Scholar
Smith, B., Bjorstad, P. & Gropp, W. 2004 Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press.Google Scholar
Stangeby, P. C. 2000 The Plasma Boundary of Magnetic Fusion Devices. Institute of Physics Publishing.Google Scholar
Tskhakaya, D. 2012 On recent massively parallelized PIC simulations of the SOL. Contrib. Plasma Phys. 52 (5–6), 490499.Google Scholar
Tskhakaya, D., Groth, M. & JET EFDA Contributors 2015 Modelling of tungsten re-deposition coefficient. J. Nucl. Mater. 463, 624628.Google Scholar
Wesson, J. & Campbell, D. J. 1997 Tokamaks. Clarendon.Google Scholar
Yanenko, N. N. 1971 The Method of Fractional Steps. Springer.Google Scholar