Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T01:26:18.777Z Has data issue: false hasContentIssue false

Evidence of Anisotropic Thermoelectric Properties in La2/3Ca1/3MnO3 Thin Films Studied by Laser-Induced Transient Voltages

Published online by Cambridge University Press:  10 February 2011

H.-U. Habermeier
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany Institute of Lasers, Yunnan Polytechnic University, Kunming 650051, P. R. China
Xiaohang Li
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany
Pengxiang Zhang
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany Institute of Lasers, Yunnan Polytechnic University, Kunming 650051, P. R. China
Get access

Abstract

Pulsed UV laser illumination of doped LaMnO3 thin films deposited on vicinal cut SrTiO3 [ STO ] substrates causes unexpected transient voltages at room temperature in remarkable analogy to those observed for intrinsically anisotropic YBa3Cu3O7−x, [YBCO] thin films. The experimental data for La2/3Ca1/3MnO3 [LCMO] thin films are consistent with the description of thermoelectric fields caused by off-diagonal elements of the Seebeck tensor. Systematic measurements of the dependence of the laser-induced signal on the geometry of the sample, the temperature and doping dependence suggest that the anisotropy of the Seebeck tensor is due to combination of long range co-operative Jahn-Teller distortions and substrate-induced biaxial strain effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jonker, G. H. and Santen, J. H. Van, Physica 16, p.337 (1950)Google Scholar
2. Volger, J., Physics 20, p.49 (1954)Google Scholar
3. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R., Ramesh, R., and Chen, L. H., Science, 264, p.413 (1994)Google Scholar
4. Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl Phys. Lett. 63, p.1990 (1993)Google Scholar
5. Zener, C., Phys. Rev. 82, p.403 (1951)Google Scholar
6. Millis, A. J., Littlewood, P. B. and Shraiman, B. I., Phys. Rev. Lett. 74 p. 5144 (1995), and Phys. Rev. Lett. 77, p.175 (1996)Google Scholar
7. Chang, C.L., Kleinhannes, A., Moulton, W.G., and Testardi, R. L., Phys. Rev. B 41, p.11,564 (1990)Google Scholar
8. Lengfellner, H., Kremb, G., Schnellbögl, A., Betz, J., Renk, K. F., and Prettl, W., Appl. Phys. Lett. 60, p.501 (1992)Google Scholar
9. Testardi, L. R., Appl. Phys. Lett. 64, p.2,347 (1994)Google Scholar
10. Habermeier, H.-U., Jisrawi, N., and Jäger-Waldau, G., Inst. Phys. Conf. Ser. 148, p.1,023 (1995)Google Scholar
11. Habermeier, H.-U., Jisrawi, N., Jäger-Waldau, G., Sticher, U., and Leibold, B., Mat. Res. Soc. Symp. Proc. 379, p.229 (1996)Google Scholar
12. Nye, J. F., Physical Properties of Crystals (Clarendon, Oxford 1985), Chap. 7Google Scholar
13. Habermeier, H.-U., Eur. J. Solid State Inorg. Chem 28, p.201 (1991)Google Scholar
14. McCormack, M., Jin, S., Tiefel, T. H., Fleming, R. M., Philips, J. M., and Ramesh, R., Appl Phys.Lett. 64, p.3,045 (1994)Google Scholar
15. Praus, R. B., Leibold, B., Gross, G. M., and Habermeier, H.-U., Appl. Surf. Sci. 138–139, p.40 (1999)Google Scholar
16. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford 1979 ) p.52 Google Scholar
17. Asamitsu, A., Moritomo, Y. and Tokura, Y., Phys. Rev. B 53, p.R2952 (1996)Google Scholar
18. Uhlenbeck, S., Büchner, B., Gross, R., Freimuth, A., Guevara, A. Maria de Leon, and levschi, A. Revco, Phys. Rev. B 57,. R5,571 (1998)Google Scholar