Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T22:28:16.294Z Has data issue: false hasContentIssue false

Degradation Study of Ultra-thin JVD Silicon Nitride Mnsfets

Published online by Cambridge University Press:  01 February 2011

K. N. ManjulaRani
Affiliation:
Department of Electrical Engineering Indian Institute of Technology, Bombay Mumbai 400076 India email: rani,rrao,vasi@ee.iitb.ac.in
V. Ramgopal Rao
Affiliation:
Department of Electrical Engineering Indian Institute of Technology, Bombay Mumbai 400076 India email: rani,rrao,vasi@ee.iitb.ac.in
J. Vasi
Affiliation:
Department of Electrical Engineering Indian Institute of Technology, Bombay Mumbai 400076 India email: rani,rrao,vasi@ee.iitb.ac.in
Get access

Abstract

In this paper we discuss a new method for measuring border trap density (Nbt) in sub-micron transistors using the hysteresis in drain current. We have used this method to measure Nbt in jet Vapour Deposited (JVD) Silcon Nitride transistors (MNSFETs). We have extended this method to measure the energy and spatial distribution of border traps in these devices. The transient drain current varies linearly with logarthmic time. This suggests that tunneling is the dominant charge exchange mechanism of border traps. The pre-stress energy distribution is uniform whereas poststress energy distribution shows a peak near the midgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ma, T. P., IEEE Trans. Electron Devices, 45, p. 680, Mar. 1998.Google Scholar
[2] Mahapatra, S., Rao, V. Ramgopal, ManjulaRani, K. N., Parikh, C. D., J. Vasi et. al., Int. Symp. on VLSI Tech., 1999.Google Scholar
[3] Fleetwood, D. M., IEEE Trans. on Nucl. Sc., Vol. 39, No. 2, 1992.Google Scholar
[4] Paulsen, R. E., Siegriej, R. R. et. al., IEEE Electron Device Lett., Vol-13, No. 12, p. 627, 1992.Google Scholar
[5] Tanner, Philip, Dimitrijev, Sima, Yeow, Y. T. and Harrison, H. B., IEEE Electron Device Lett., Vol-17, No. 11, p. 515, 1996.Google Scholar
[6] Fleetwood, D. M., Winokur, P. S., Reber, R. A. Jr, Meissenheimer, T. L. and Schwank, J. R., J. Appl. Phys., 73(10), 1993.Google Scholar
[7] Bhat, N. and Saraswat, K.C., J. Appl. Phys., 84(5), 1998.Google Scholar
[8] Bourcerie, M., Doyle, B. S., Marchetaux, J., Soret, J. and Boudou, A. IEEE Trans. Electron Dev., Vol-37, No. 3, p.708, 1990.Google Scholar
[9] Heiman, F. P. and Warfield, G., IEEE Trans. Electron Dev., ED-12, p. 167, 1965.Google Scholar
[10] Balland, B. and Pinard, P., Phys. Stat. Sol.(a) 47, p. 251, 1978.Google Scholar
[11] Ross, E.C. and Wallmark, J. T., RCA Review, V0l. 30, p. 366, 1969.Google Scholar
[12] Kapoor, V. J., Pergammon Press, p.117, 1980.Google Scholar
[13] Robertson, J. and Powell, M. J., Appl. Phys. Lett., 44, p.415, 1984.Google Scholar