Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T13:47:39.978Z Has data issue: false hasContentIssue false

Numerical investigation of multiple-bubble behaviour and induced pressure in a megasonic field

Published online by Cambridge University Press:  06 April 2017

N. Ochiai*
Affiliation:
Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
J. Ishimoto
Affiliation:
Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
*
Email address for correspondence: ochiai@alba.ifs.tohoku.ac.jp

Abstract

Clarifying the mechanism of particle removal by megasonic cleaning and multiple-bubble dynamics in megasonic fields is essential for removing contaminant particles during nanodevice cleaning without pattern damage. In particular, the effect of the interaction of multiple bubbles on bubble-collapse behaviour and impulsive pressure induced by bubble collapse should also be discussed. In this study, a compressible locally homogeneous model of a gas–liquid two-phase medium is used to numerically analyse the multiple-bubble behaviour in a megasonic field. The numerical results indicate that, for bubbles with the same equilibrium radius, the natural frequency of the bubble decreases, and bubbles with smaller equilibrium radii resonate with the megasonic wave as the number of bubbles increases. Therefore, the equilibrium radius of bubbles showing maximum wall pressure decreases with an increasing number of bubbles. The increase in bubble number also results in chain collapse, inducing high wall pressure. The effect of the configuration of bubbles is discussed, and the bubble–bubble interaction in the concentric distribution makes a greater contribution to the decrease in the natural frequency of bubbles than the interaction in the straight distribution.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, W. K., Thomas, J. L. & Van Leer, B. 1986 Comparison of finite volume flux vector splittings for the Euler equations. AIAA J. 24 (9), 14531460.CrossRefGoogle Scholar
Betney, M. R., Tully, B., Hawker, N. A. & Ventikos, Y. 2015 Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid. Phys. Fluids 27, 036101.Google Scholar
Blake, J. R., Robinson, P. B., Shima, A. & Tomita, Y. 1993 Interaction of two cavitation bubbles with a rigid boundary. J. Fluid Mech. 255, 702721.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.Google Scholar
Brunton, J. H. & Camus, J. J. 1970 The application of high-speed photography to the analysis of flow in cavitation and drop-impact studies. In Proceedings of the Int. Conf. High-Speed Photography, pp. 444–440. Society of Motion Picture and Television Engineers.Google Scholar
Chahine, G. L. & Duraiswami, R. 1992 Dynamical interactions in a multibubble cloud. Trans. ASME J. Fluids Engng 114, 680686.Google Scholar
Chahine, G. L., Kapahi, A., Choi, J. & Hsiao, C.-T. 2015 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528549.CrossRefGoogle ScholarPubMed
Chahine, G. L. & Liu, H. L. 1985 A singular-perturbation theory of the growth of a bubble cluster in a superheated liquid. J. Fluid Mech. 156, 257279.Google Scholar
Chew, L. W., Klaseboer, E., Ohl, S.-W. & Khoo, B. C. 2011 Interaction of two differently sized oscillating bubbles in a free field. Phys. Rev. E 84, 066307.Google Scholar
Choi, H., Kim, H., Yoon, D., Lee, J. W., Kang, B.-K., Kim, M.-S., Park, J.-G., Kwon, S.-B. & Kim, T. 2013 Development of CO2 gas cluster cleaning method and its characterization. Microelectron. Engng 102, 8790.CrossRefGoogle Scholar
Cui, P., Wang, Q. X., Wang, S. P. & Zhang, A. M. 2016 Experimental study on interaction and coalescence of synchronized multiple bubbles. Phys. Fluids 28, 012103.CrossRefGoogle Scholar
D’Agostino, L. & Brennen, C. 1989 Linearized dynamics of spherical bubble clouds. J. Fluid Mech. 199, 155176.Google Scholar
Dear, J. P. & Field, J. E. 1988 A study of the collapse of arrays of cavities. J. Fluid Mech. 190, 409425.Google Scholar
Fong, S. W., Adhikari, D., Klaseboer, E. & Khoo, B. C. 2009 Interactions of multiple spark-generated bubbles with phase. Exp. Fluids 46, 705724.Google Scholar
Foody, B. E. & Huber, P. W. 1981 On the radial oscillations of multiple gas bubbles in an incompressible liquid. Trans. ASME J. Appl. Mech. 48, 727731.CrossRefGoogle Scholar
Fujiwara, T. & Shima, A. 1993 Natural frequencies of two spherical bubbles near a solid wall. Ultrasonics 32 (3), 223228.CrossRefGoogle Scholar
Grieser, F., Choi, P.-K., Enomoto, N., Harada, H., Okitsu, K. & Yasui, K.(Eds) 2015 Sonochemistry and the Acoustic Bubble. Elsevier.Google Scholar
Han, B., Köhler, K., Jungnickel, K., Mettin, R., Lauterborn, W. & Vogel, A. 2015a Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706742.Google Scholar
Han, R., Zhang, A. & Liu, Y. 2015b Numerical investigation on the dynamics of two bubbles. Ocean Engng 110, 325338.CrossRefGoogle Scholar
Howkins, S. D. 1965 Measurements of the resonant frequency of a bubble near a rigid boundary. J. Acoust. Soc. Am. 37 (3), 504508.CrossRefGoogle Scholar
Ishimoto, J., Oh, U., Koike, T. & Ochiai, N. 2014 Photoresist removal-cleaning technology using cryogenic micro-solid nitrogen spray. ECS J. Solid State Sci. Technol. 3 (1), N3046N3053.Google Scholar
Jameson, A. & Baker, T. 1983 Solution of the equations for complex configurations. In AIAA Paper, vol. 24, pp. 293302. AIAA.Google Scholar
Kim, K.-H., Chahine, G., Franc, J.-P. & Karimi, A.(Eds) 2014 Advanced Experimental and Numerical Technieques for Cavitation Erosion Prediction. Springer.Google Scholar
Kim, T. H., Busnaina, A., Park, J.-G. & Kim, D. 2012 Nanoscale particle removal using wet laser shockwave cleaning. ECS J. Solid State Sci. Technol. 1 (2), 7077.Google Scholar
Kodama, T., Takayama, K. & Nagayasu, N. 1996 The dynamics of two air bubbles loaded by an underwater shock wave. J. Appl. Phys. 80 (10), 55875592.Google Scholar
Lauer, E., Hu, X. Y., Hickel, S. & Adams, N. A. 2012 Numerical investigation of collapsing cavity arrays. Phys. Fluids 24, 052104.Google Scholar
Lauterborn, W. 1976 Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59 (2), 283293.Google Scholar
Lauterborn, W. & Hentschel, W. 1985 Cavitation bubble dynamics studies by high speed photography and holography: part one. Ultrasonics 23 (6), 260268.Google Scholar
Lauterborn, W. & Hentschel, W. 1986 Cavitation bubble dynamics studies by high speed photography and holography: part two. Ultrasonics 24 (2), 5965.Google Scholar
Li, Z. G., Xiong, S., Chin, L. K., Ando, K., Zhang, J. B. & Liu, A. Q. 2015 Water’s tensile strength measured using an optofluidic chip. Lab on a Chip 15, 21582161.Google Scholar
Ma, J., Hsiao, C.-T. & Chahine, G. L. 2015 Euler–Lagrange simulations of bubble cloud dynamics near a wall. Trans. ASME J. Fluids Engng 137, 041301.Google Scholar
Nakagawa, K. 1985 Effects of interbubble distance on the oscillation of two bubbles closely rising in water. Kagaku Kougaku Ronbunshu 11 (5), 563566 (in Japanese).Google Scholar
Ochiai, N., Iga, Y., Nohmi, M. & Ikohagi, T. 2010 Numerical prediction of cavitation erosion intensity in cavitating flows around a Clark Y 11.7 % hydrofoil. J. Fluid Sci. Technol. 5 (3), 416431.Google Scholar
Ochiai, N., Iga, Y., Nohmi, M. & Ikohagi, T. 2011 Numerical analysis of nonspherical bubble collapse behavior and induced impulsive pressure during first and second collapses near the wall boundary. J. Fluid Sci. Technol. 6 (6), 860874.Google Scholar
Ochiai, N. & Ishimoto, J. 2014 Numerical analysis of single bubble behavior in a megasonic field by non-spherical Eulerian simulation. ECS J. Solid State Sci. Technol. 3 (1), N3112N3117.CrossRefGoogle Scholar
Ochiai, N. & Ishimoto, J. 2015 Computational study of the dynamics of two interacting bubbles in a megasonic field. Ultrason. Sonochem. 26, 351360.Google Scholar
Okada, M., Kawata, S. & Sonoda, Y. 2002 Stencil reticle cleaning using an Ar aerosol cleaning technique. J. Vac. Sci. Technol. B 20, 7175.Google Scholar
Okuda, K. & Ikohagi, T. 1996 Numerical simulation of collapsing behavior of bubble clouds. Trans. JSME Ser. B 62 (603), 37923797 (in Japanese).Google Scholar
Omta, R. 1987 Oscillations of a cloud of bubbles of small and not so small amplitude. J. Acoust. Soc. Am. 82 (3), 10181033.Google Scholar
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.Google Scholar
Prosperetti, A., Crum, L. A. & Commander, K. W. 1988 Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83 (2), 502514.CrossRefGoogle Scholar
Shima, A. 1971 The natural frequencies of two spherical bubbles oscillating in water. Trans. ASME D: J. Basic Engng 93, 426432.Google Scholar
Shima, A. & Fujiwara, T. 1992 The behavior of two bubbles near a solid wall. Archive Appl. Mech. 62, 5361.Google Scholar
Shima, A. & Tomita, Y. 1981 The behavior of a spherical bubble near a solid wall in a compressible liquid. Ingenieur-Archiv. 51, 243255.Google Scholar
Shima, E. & Jounouchi, T. 1994 Role of computational fluid dynamics in aeronautical engineering (no. 12) – formulation and verification of uni-particle upwind schemes for the Euler equations. In Proceedings of the 12th NAL Symposium on Aircraft Computational Aerodynamics, pp. 255260. National Aerospace Laboratory.Google Scholar
Sugawara, S. 1932 New steam table. J. Japan Soc. Mech. Engineers 35 (186), 9991004 (in Japanese).Google Scholar
Swantek, A. B. & Austin, J. M. 2010 Collapse of void arrays under stress wave loading. J. Fluid Mech. 649, 399427.Google Scholar
Takahira, H., Akamatsu, T. & Fujikawa, S. 1994 Dynamics of a cluster of bubbles in a liquid (theoretical analysis). JSME Intl J. B 37 (2), 297305.Google Scholar
Testud-Giovanneschi, P., Alloncle, A. P. & Dufresne, D. 1990 Collective effects of cavitation: experimental study of bubble–bubble and bubble–shock wave interactions. J. Appl. Phys. 67 (8), 35603564.Google Scholar
Tiwari, A., Pantano, C. & Freund, J. B. 2015 Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 123.Google Scholar
Tomita, Y., Shima, A. & Ohno, T. 1984 Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. J. Appl. Phys. 56 (1), 125131.Google Scholar
Wang, Y.-C. & Brennen, C. E. 1999 Numerical computation of shock waves in a spherical cloud of cavitation bubbles. Trans. ASME J. Fluids Engng 121, 872880.Google Scholar
Xi, Y., Xiongliang, Y. & Rui, H. 2015 Dynamics of cavitation bubbles in acoustic field near the rigid wall. Ocean Engng 109, 507516.Google Scholar

Ochiai Supplementary Movie 1

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 2:0 μm, single bubble)

Download Ochiai Supplementary Movie 1(Video)
Video 2.5 MB

Ochiai Supplementary Movie 10

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 1:4 μm, seven bubbles, circular distribution)

Download Ochiai Supplementary Movie 10(Video)
Video 5 MB

Ochiai Supplementary Movie 11

Time evolution of pressure distribution and isoline of the void fraction α = 0:5 on the z plane (R0 = 1:6 μm, nine bubbles, circular distribution)

Download Ochiai Supplementary Movie 11(Video)
Video 643.4 KB

Ochiai Supplementary Movie 2

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 2:0 μm two bubbles)

Download Ochiai Supplementary Movie 2(Video)
Video 3 MB

Ochiai Supplementary Movie 3

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 2:0 μm, three bubbles)

Download Ochiai Supplementary Movie 3(Video)
Video 3.1 MB

Ochiai Supplementary Movie 4

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 1:6 μm, nine bubbles)

Download Ochiai Supplementary Movie 4(Video)
Video 5.4 MB

Ochiai Supplementary Movie 5

Time evolution of pressure distribution and isoline of the void fraction α = 0:5 on the z = 0 plane during the inner bubble collapse (R0 = 1:6 μm, nine bubbles)

Download Ochiai Supplementary Movie 5(Video)
Video 806.5 KB

Ochiai Supplementary Movie 6

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R10 = 2:0 μm, R20 = 1:6 μm)

Download Ochiai Supplementary Movie 6(Video)
Video 3.3 MB

Ochiai Supplementary Movie 7

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 2:0 μm, two bubbles, long initial distance between bubbles)

Download Ochiai Supplementary Movie 7(Video)
Video 4.7 MB

Ochiai Supplementary Movie 8

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α = 0:5 (R0 = 1:8 μm, three bubbles, long initial distance between bubbles)

Download Ochiai Supplementary Movie 8(Video)
Video 5.7 MB

Ochiai Supplementary Movie 9

Time evolution of pressure distribution on the side wall and isosurface of the void fraction α 0:5 (R0 = 1:6 μm, five bubbles, circular distribution)

Download Ochiai Supplementary Movie 9(Video)
Video 4.1 MB