Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T15:16:21.539Z Has data issue: false hasContentIssue false

Dynamic Behavior of Intrinsic Point Defects in Fz and Cz Silicon Crystals

Published online by Cambridge University Press:  03 September 2012

Takao Abe
Affiliation:
Shin-Etsu Handotai, Isobe, Annaka, Gunma 379–01
Hiroshi Takeno
Affiliation:
Shin-Etsu Handotai, Isobe, Annaka, Gunma 379–01
Get access

Abstract

Detaching the crystals from the melt revealed the real state and dynamic change of intrinsic point defects. From this observation it is confirmed that the predominant point defects near the melting point are vacancies. Clusters of interstitial-type dislocation loops (CDL) are eliminated by taking an extremely low growth rate under 0.2 mm/min and nitrogen doping. The anomalous oxygen precipitate (AOP) of the crystals grown in a nitrogen ambient is enhanced. AOP and ring-oxidation induced stacking fault (R-OSF) coexist at the periphery in nitrogen doped crystals. Almost all crystals have defect boundaries between periphery and center region which may be attributed to a stress field in the crystals during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abe, T., Itoh, T., Hayamizu, Y., Sunagawa, K., Yokota, S. and Yamagishi, H., Defect Control in Semiconductors edited by Sumino, K. (North Holland, Yokohama 1989) p. 297 Google Scholar
2. Tachimori, K., Sakon, T. and Kaneko, T., The 7th Symposium of Crystal Engineering, Jpn. Soc. Appl. Phys., Catalog No. AP 902217 p. 27 (1990) in JapaneseGoogle Scholar
3. Ryuta, J., Monta, E., Tanaka, T. and Shimanuki, Y., Jpn. J. Appl. Phys 22 (1990) L 1947 Google Scholar
4. Yamagishi, H., Fusegawa, I., Fujimaki, N. and Katayama, M., Semicond. Sci. Technol. 7 (1992) A 135 Google Scholar
5. Takeno, H., Ushio, S. and Takenaka, T., This Symposium E, MRS Spring Meeting 1992 (San Francisco)Google Scholar
6. Harada, H., Abe, T. and Chikawa, J., Semiconductor Silicon 1986 eds. Huff, H. R. et al. (Electrochem. Soc. Pennington, 1986) p. 76 Google Scholar
7. Abe, T. and Kimura, M., Semiconductor Silicon 1990 eds. Huff, H. R. et al. (Electrochem. Soc. Pennington, 1990) p. 105 Google Scholar
8. Abe, T., Masui, T., Harada, H. and Chikawa, J., VLSI Science and Technology 1985, eds. Bullis, W. M. et al. (Electrochem. Soc. Pennington, 1985) p. 543 Google Scholar
9. Abe, T., Harada, H., Ozawa, N. and Adomi, K., Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, eds. Mikkelsen, J.C et al. MRS Symp. Proc. 59 (1985) p. 537 Google Scholar
10. Tajima, M., Masui, T., Abe, T. and Nozaki, T., Jpn. J. Appl. Phys. 20 (1981) L 423 CrossRefGoogle Scholar
11. Tokumaru, Y., Masui, T. and Abe, T., Jpn. J. Appl. Phys. 21 (1982) L 443 Google Scholar
12. Hara, A., Fukuda, T., Miyabo, T. and Hirai, I., Jpn. J. Appl. Phys. 28 (1989) 142 Google Scholar
13. Solokin, L. M. et al., by Private CommunicationsGoogle Scholar
14. Ahn, S. T., Kennel, H. W., Plumer, J. D. and Tiller, W. A., J. Appl. Phys. 64 (1988) 4914 Google Scholar
15. Tsukada, T., Hozawa, M. and Imaishi, N., J. Chem. Eng. Jpn. 23 (1990) 286 Google Scholar
16. Bornside, D. E., Kinney, T. A. and Brown, R. A., J. Cryst. Growth 108 (1991) 779 Google Scholar