Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T15:01:25.842Z Has data issue: false hasContentIssue false

Simulations of an Interface Crack Nucleation During Nanoindentaion : Molecular Dynamics and Finite Element Coupling Approach

Published online by Cambridge University Press:  01 February 2011

Shotaro Hara
Affiliation:
hara.shotaro@fml.t.u-tokyo.ac.jp, The university of Tokyo, Mechanical Engineering, Hongo7-3-1,Bunkyo-ku, Tokyo, N/A, Japan
Satoshi Izumi
Affiliation:
izumi@fml.t.u-tokyo.ac.jp, The University of Tokyo, Mechanical Engineering, Hongo7-3-1, Bunkyo-ku, Tokyo, N/A, Japan
Shinsuke Sakai
Affiliation:
sakai@fml.t.u-tokyo.ac.jp, The University of Tokyo, Mechanical Engineering, Hongo7-3-1, Bunkyo-ku, Tokyo, N/A, Japan
Yoshiyuki Eguchi
Affiliation:
yoshiyuki.eguchi.cz@hitachi.com, Hitachi East Japan Solutions, Ltd, Ibaraki, N/A, Japan
Tomio Iwasaki
Affiliation:
tomio.iwasaki.ka@hitachi.com, Hitach, Ltd, Ibaraki, N/A, Japan
Get access

Abstract

We carried out the nanoindentation simulations for the Ru (superlayer) / Cu (film) / SiO2 (substrate) system using the finite temperature MD-FEM coupling method. The calculations are performed for the different adhesion energies of Cu/SiO2 ranging from 0.2 to 0.6 J/m2. During loading, it was found that the interfacial crack nucleation occurs at three to four times the contact radius, driven by the tensile stress acted on the Cu/SiO2 interface. We also show that the asymmetric defect behavior have a great effect on giving birth to the crack nucleation. The observation of our simulation indicates that the mechanism of the crack nucleation strongly depends on the interfacial bonding energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iwasaki, T., Comput. Mech., 25, 78 (2000)Google Scholar
2 Marshall, D. B., Evans, A. G., J. Appl. Phys., 56, 2632 (1984)Google Scholar
3 Kriese, M. D., Gerberich, W. W., Moody, N. R., J. Mater. Res., 14, 3007 (1999)Google Scholar
4 Vliet, K. J. V., Li, J., Zhu, T., Yip, S., Suresh, S., Phys. Rev. B., 67, 104105 (2003)Google Scholar
5 Kohlhoff, S., Philo. Mag. A, 64, 851 (1991)Google Scholar
6 Qu, S., Shastry, V., Curtin, W. A., Miller, R. E., Modelling Simul. Mater. Sci. Eng. 13, 1101 (2005).Google Scholar
7http://www.alphaworks.ibm.com/tech/wsmpGoogle Scholar
8 Primpton, S., J. Comput. Phys., 117, 1 (1995)Google Scholar
9 Kriese, M. D., Gerberich, W. W., Moody, N. R., J. Mater. Res., 14, 3019 (1999)Google Scholar
10 Kelchner, C. L. et. al, Phys. Rev. B, 58, 11085 (1998)Google Scholar
11 Rodney, D., Deby, J. B., Verdier, M., Modelling Simul. Mater. Sci. Eng. 13, 427 (2003).Google Scholar
12 Zhou, X. W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezo, A., Petford-Long, A. K., Smith, G. D. W., Clifton, P. H., Martens, R. L., Kelly, T. F., Acta Mater. 49, 4005 (2001).Google Scholar
13 Lennard-Jones, J., Cohesion, J. E.. Proceedings of the Physical Society 1931, 43, 461482.Google Scholar
14 Zhou, X. W., Johnson, R. A., Wadley, H. N. G., Phys. Rev. B 69, 144113 (2004).Google Scholar
15 Volinsky, A. A., Moody, N. R., Gerberich, W. W., Acta. Mater., 50, 441 (2002)Google Scholar